Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Intern Med ; 296(3): 234-248, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38973251

RESUMO

BACKGROUND: Spinocerebellar ataxia 4 (SCA4), characterized in 1996, features adult-onset ataxia, polyneuropathy, and linkage to chromosome 16q22.1; its underlying mutation has remained elusive. OBJECTIVE: To explore the radiological and neuropathological abnormalities in the entire neuroaxis in SCA4 and search for its mutation. METHODS: Three Swedish families with undiagnosed ataxia went through clinical, neurophysiological, and neuroimaging tests, including PET studies and genetic investigations. In four cases, neuropathological assessments of the neuroaxis were performed. Genetic testing included short read whole genome sequencing, short tandem repeat analysis with ExpansionHunter de novo, and long read sequencing. RESULTS: Novel features for SCA4 include dysautonomia, motor neuron affection, and abnormal eye movements. We found evidence of anticipation; neuroimaging demonstrated atrophy in the cerebellum, brainstem, and spinal cord. [18F]FDG-PET demonstrated brain hypometabolism and [11C]Flumazenil-PET reduced binding in several brain lobes, insula, thalamus, hypothalamus, and cerebellum. Moderate to severe loss of Purkinje cells in the cerebellum and of motor neurons in the anterior horns of the spinal cord along with pronounced degeneration of posterior tracts was also found. Intranuclear, mainly neuronal, inclusions positive for p62 and ubiquitin were sparse but widespread in the CNS. This finding prompted assessment for nucleotide expansions. A polyglycine stretch encoding GGC expansions in the last exon of the zink finger homeobox 3 gene was identified segregating with disease and not found in 1000 controls. CONCLUSIONS: SCA4 is a neurodegenerative disease caused by a novel GGC expansion in the coding region of ZFHX3, and its spectrum is expanded to include dysautonomia and neuromuscular manifestations.


Assuntos
Proteínas de Homeodomínio , Ataxias Espinocerebelares , Humanos , Masculino , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico por imagem , Feminino , Adulto , Pessoa de Meia-Idade , Proteínas de Homeodomínio/genética , Linhagem , Disautonomias Primárias/genética , Tomografia por Emissão de Pósitrons , Suécia , Expansão das Repetições de Trinucleotídeos/genética
2.
ACS Chem Neurosci ; 15(10): 2018-2027, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38701380

RESUMO

In silico modeling was applied to study the efficiency of two ligands, namely, UCB-J and UCB-F, to bind to isoforms of the synaptic vesicle glycoprotein 2 (SV2) that are involved in the regulation of synaptic function in the nerve terminals, with the ultimate goal to understand the selectivity of the interaction between UCB-J and UCB-F to different isoforms of SV2. Docking and large-scale molecular dynamics simulations were carried out to unravel various binding patterns, types of interactions, and binding free energies, covering hydrogen bonding and nonspecific hydrophobic interactions, water bridge, π-π, and cation-π interactions. The overall preference for bonding types of UCB-J and UCB-F with particular residues in the protein pockets can be disclosed in detail. A unique interaction fingerprint, namely, hydrogen bonding with additional cation-π interaction with the pyridine moiety of UCB-J, could be established as an explanation for its high selectivity over the SV2 isoform A (SV2A). Other molecular details, primarily referring to the presence of π-π interactions and hydrogen bonding, could also be analyzed as sources of selectivity of the UCB-F tracer for the three isoforms. The simulations provide atomic details to support future development of new selective tracers targeting synaptic vesicle glycoproteins and their associated diseases.


Assuntos
Glicoproteínas de Membrana , Proteínas do Tecido Nervoso , Humanos , Ligação de Hidrogênio , Ligantes , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/química , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica/fisiologia , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Vesículas Sinápticas/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa