Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 187(14): 3531-3540.e13, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38942016

RESUMO

A number of species have recently recovered from near-extinction. Although these species have avoided the immediate extinction threat, their long-term viability remains precarious due to the potential genetic consequences of population declines, which are poorly understood on a timescale beyond a few generations. Woolly mammoths (Mammuthus primigenius) became isolated on Wrangel Island around 10,000 years ago and persisted for over 200 generations before becoming extinct around 4,000 years ago. To study the evolutionary processes leading up to the mammoths' extinction, we analyzed 21 Siberian woolly mammoth genomes. Our results show that the population recovered quickly from a severe bottleneck and remained demographically stable during the ensuing six millennia. We find that mildly deleterious mutations gradually accumulated, whereas highly deleterious mutations were purged, suggesting ongoing inbreeding depression that lasted for hundreds of generations. The time-lag between demographic and genetic recovery has wide-ranging implications for conservation management of recently bottlenecked populations.


Assuntos
Extinção Biológica , Genoma , Mamutes , Mutação , Animais , Mamutes/genética , Genoma/genética , Sibéria , Filogenia , Evolução Molecular , Fatores de Tempo
2.
Ecol Evol ; 14(7): e70011, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38983702

RESUMO

Examining patterns of genetic diversity are crucial for conservation planning on endangered species, while inferring the underlying process of recent anthropogenic habitat modifications in the context potential long-term demographic changes remains challenging. The globally endangered scaly-sided merganser (SSME), Mergus squamatus, is endemic to a narrow range in Northeast Asia, and its population has recently been contracted into two main breeding areas. Although low genetic diversity has been suggested in the Russian population, the genetic status and demographic history of these individuals have not been fully elucidated. We therefore examined the genetic diversity and structure of the breeding populations of the SSME and investigated the relative importance of historical and recent demographic changes to the present-day pattern of genetic diversity. Using 10 nuclear microsatellite (SSR) markers and mitochondrial DNA (mtDNA) control region sequences, we found limited female-inherited genetic diversity and a high level of nuclear genetic diversity. In addition, analysis of both markers consistently revealed significant but weak divergence between the breeding populations. Inconsistent demographic history parameters calculated from mtDNA and bottleneck analysis results based on SSR suggested a stable historical effective population size. By applying approximate Bayesian computation, it was estimated that populations started to genetically diverge from each other due to recent fragmentation events caused by anthropogenic effects rather than isolation during Last Glacial Maximum (LGM) and post-LGM recolonization. These results suggest that limited historical population size and shallow evolutionary history may be potential factors contributing to the contemporary genetic diversity pattern of breeding SSME populations. Conservation efforts should focus on protecting the current breeding habitats from further destruction, with priority given to both the Russian and Chinese population, as well as restoring the connected suitable breeding grounds.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa