Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
N Engl J Med ; 380(20): 1918-1928, 2019 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-31091373

RESUMO

BACKGROUND: In the context of kidney transplantation, genomic incompatibilities between donor and recipient may lead to allosensitization against new antigens. We hypothesized that recessive inheritance of gene-disrupting variants may represent a risk factor for allograft rejection. METHODS: We performed a two-stage genetic association study of kidney allograft rejection. In the first stage, we performed a recessive association screen of 50 common gene-intersecting deletion polymorphisms in a cohort of kidney transplant recipients. In the second stage, we replicated our findings in three independent cohorts of donor-recipient pairs. We defined genomic collision as a specific donor-recipient genotype combination in which a recipient who was homozygous for a gene-intersecting deletion received a transplant from a nonhomozygous donor. Identification of alloantibodies was performed with the use of protein arrays, enzyme-linked immunosorbent assays, and Western blot analyses. RESULTS: In the discovery cohort, which included 705 recipients, we found a significant association with allograft rejection at the LIMS1 locus represented by rs893403 (hazard ratio with the risk genotype vs. nonrisk genotypes, 1.84; 95% confidence interval [CI], 1.35 to 2.50; P = 9.8×10-5). This effect was replicated under the genomic-collision model in three independent cohorts involving a total of 2004 donor-recipient pairs (hazard ratio, 1.55; 95% CI, 1.25 to 1.93; P = 6.5×10-5). In the combined analysis (discovery cohort plus replication cohorts), the risk genotype was associated with a higher risk of rejection than the nonrisk genotype (hazard ratio, 1.63; 95% CI, 1.37 to 1.95; P = 4.7×10-8). We identified a specific antibody response against LIMS1, a kidney-expressed protein encoded within the collision locus. The response involved predominantly IgG2 and IgG3 antibody subclasses. CONCLUSIONS: We found that the LIMS1 locus appeared to encode a minor histocompatibility antigen. Genomic collision at this locus was associated with rejection of the kidney allograft and with production of anti-LIMS1 IgG2 and IgG3. (Funded by the Columbia University Transplant Center and others.).


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Variações do Número de Cópias de DNA , Rejeição de Enxerto/genética , Transplante de Rim , Proteínas com Domínio LIM/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Estudos de Coortes , Estudos de Associação Genética , Genótipo , Antígenos HLA/genética , Teste de Histocompatibilidade , Humanos , Imunoglobulina G/sangue , Proteínas com Domínio LIM/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Polimorfismo de Nucleotídeo Único , Doadores de Tecidos
2.
Am J Transplant ; 20(5): 1431-1438, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31811777

RESUMO

Cardiac allograft vasculopathy (CAV) is associated with intragraft B cell infiltrates. Here, we studied the clonal composition of B cell infiltrates using 4 graft specimens with CAV. Using deep sequencing, we analyzed the immunoglobulin heavy chain variable region repertoire in both graft and blood. Results showed robust B cell clonal expansion in the graft but not in the blood for all cases. Several expanded B cell clones, characterized by their uniquely rearranged complementarity-determining region 3, were detected in different locations in the graft. Sequences from intragraft B cells also showed elevated levels of mutated rearrangements in the graft compared to blood B cells. The number of somatic mutations per rearrangement was also higher in the graft than in the blood, suggesting that B cells continued maturing in situ. Overall, our studies demonstrated B cell clonal expansion in human cardiac allografts with CAV. This local B cell response may contribute to the pathophysiology of CAV through a mechanism that needs to be identified.


Assuntos
Cardiopatias , Transplante de Coração , Aloenxertos , Linfócitos B , Rejeição de Enxerto/etiologia , Transplante de Coração/efeitos adversos , Humanos
3.
J Immunol ; 200(3): 1207-1219, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29263213

RESUMO

The blockade of immune checkpoints by anti-receptor and/or anti-ligand mAb is one of the most promising approaches to cancer immunotherapy. The interaction between Ig-like transcript 3 (ILT3), a marker of tolerogenic dendritic cells, also known as LILRB4/LIR5/CD85k, and its still unidentified ligand on the surface of activated human T cells is potentially important for immune checkpoint blockade. To identify the ILT3 ligand, we generated mAb by immunizing mice with Jurkat acute T cell leukemia, which binds ILT3.Fc to its membrane. Flow cytometry, mass spectrometry, and Biacore studies demonstrated that the ILT3 ligand is a CD166/activated leukocyte cell adhesion molecule. Knockdown of CD166 in primary human T cells by nucleofection abolished the capacity of ILT3.Fc to inhibit CD4+ Th cell proliferation and to induce the generation of CD8+CD28- T suppressor cells. CD166 displays strong heterophilic interaction with CD6 and weaker homophilic CD166-CD166 cell adhesion interaction. ILT3.Fc inhibited the growth of CD166+ tumor cell lines (TCL) derived from lymphoid malignancies in vitro and in vivo. CRISPR-Cas9-based knockout of CD166 from TCL abrogated ILT3.Fc binding and its tumor-inhibitory effect. The mechanism underlying the effect of ILT3.Fc on tumor cell growth involves inhibition of the p70S6K signaling pathway. Blockade of CD166 by ILT3.Fc inhibited progression of human TCL in NOD.Cg-Prkdc Il-2rg/SzJ mice, suggesting its potential immunotherapeutic value.


Assuntos
Molécula de Adesão de Leucócito Ativado/metabolismo , Proliferação de Células/genética , Fragmentos Fc das Imunoglobulinas/imunologia , Neoplasias/patologia , Receptores de Superfície Celular/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Molécula de Adesão de Leucócito Ativado/genética , Animais , Anticorpos Monoclonais/imunologia , Sistemas CRISPR-Cas/genética , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Feminino , Técnicas de Inativação de Genes , Humanos , Células Jurkat , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos NOD , Receptores Imunológicos , Transdução de Sinais/genética , Transdução de Sinais/imunologia
4.
ESC Heart Fail ; 8(3): 1840-1849, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33713567

RESUMO

AIMS: Allograft rejection following heart transplantation (HTx) is a serious complication even in the era of modern immunosuppressive regimens and causes up to a third of early deaths after HTx. Allograft rejection is mediated by a cascade of immune mechanisms leading to acute cellular rejection (ACR) and/or antibody-mediated rejection (AMR). The gold standard for monitoring allograft rejection is invasive endomyocardial biopsy that exposes patients to complications. Little is known about the potential of circulating miRNAs as biomarkers to detect cardiac allograft rejection. We here present a systematic analysis of circulating miRNAs as biomarkers and predictors for allograft rejection after HTx using next-generation small RNA sequencing. METHODS AND RESULTS: We used next-generation small RNA sequencing to investigate circulating miRNAs among HTx recipients (10 healthy controls, 10 heart failure patients, 13 ACR, and 10 AMR). MiRNA profiling was performed at different time points before, during, and after resolution of the rejection episode. We found three miRNAs with significantly increased serum levels in patients with biopsy-proven cardiac rejection when compared with patients without rejection: hsa-miR-139-5p, hsa-miR-151a-5p, and hsa-miR-186-5p. We identified miRNAs that may serve as potential predictors for the subsequent development of ACR: hsa-miR-29c-3p (ACR) and hsa-miR-486-5p (AMR). Overall, hsa-miR-486-5p was most strongly associated with acute rejection episodes. CONCLUSIONS: Monitoring cardiac allograft rejection using circulating miRNAs might represent an alternative strategy to invasive endomyocardial biopsy.


Assuntos
Transplante de Coração , MicroRNAs , Aloenxertos , Biomarcadores , Rejeição de Enxerto/diagnóstico , Humanos , MicroRNAs/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa