Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biomacromolecules ; 15(6): 2172-9, 2014 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-24773064

RESUMO

Intercellular adhesion modulated by cadherin molecules plays an important role in diverse cellular functions including tissue morphogenesis, regeneration, and pathogenesis. However, it is a challenging task to decipher the effects of cell-cell adhesion in vitro because of difficulty in controlling the extent and numbers of cell-cell contacts. In this study, we hypothesize that tethering recombinant extracellular domains of neural cadherin with a C-terminal immunoglobulin Fc domain (N-Cad-Fc) to a substrate with an immobilized anti-Fc antibody (Fc-antibody) and a bifunctional polymer, which is reactive to both protein and substrate, would allow us to recapitulate cell-cell adhesion, independent of the number of cells plated on the substrate. To examine this hypothesis, we first immobilized Fc-antibody to a polyacrylamide hydrogel and a methacrylate-substituted glass using poly(amino-2-hydroxyethyl-co-2-methacryloxyethyl aspartamide)-g-poly(ethylene glycol)-N-hydroxysuccinimide ester (PHMAA-g-PEGNHS) and then incubated the gel in medium containing defined concentrations of the recombinant N-Cad-Fc. The resulting N-Cad-conjugated substrate enabled us to modulate adhesion of bone marrow stromal cells to the gel surface by varying the surface density of N-Cad-Fc. In contrast, direct chemical conjugation of N-Cad-Fc to the gel surface did not support cell adhesion. Additionally, the glass substrate biologically tethered with N-Cad-Fc promoted neuronal adhesion significantly more than substrates coated with poly-l-lysine. We suggest that this novel biological tethering method could be broadly applicable for modifying substrates with a variety of classical cadherins to enable the systematic study of the effects of cadherin-modulated cell-cell adhesion on cellular activities.


Assuntos
Antígenos CD/metabolismo , Células da Medula Óssea/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Animais , Antígenos CD/química , Caderinas/química , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Especificidade por Substrato/fisiologia
2.
Sci Rep ; 9(1): 14020, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570734

RESUMO

Among high-grade brain tumors, glioblastoma is particularly difficult to treat, in part due to its highly infiltrative nature which contributes to the malignant phenotype and high mortality in patients. In order to better understand the signaling pathways underlying glioblastoma invasion, we performed the first large-scale CRISPR-Cas9 loss of function screen specifically designed to identify genes that facilitate cell invasion. We tested 4,574 genes predicted to be involved in trafficking and motility. Using a transwell invasion assay, we discovered 33 genes essential for invasion. Of the 11 genes we selected for secondary testing using a wound healing assay, 6 demonstrated a significant decrease in migration. The strongest regulator of invasion was mitogen-activated protein kinase 4 (MAP4K4). Targeting of MAP4K4 with single guide RNAs or a MAP4K4 inhibitor reduced migration and invasion in vitro. This effect was consistent across three additional patient derived glioblastoma cell lines. Analysis of epithelial-mesenchymal transition markers in U138 cells with lack or inhibition of MAP4K4 demonstrated protein expression consistent with a non-invasive state. Importantly, MAP4K4 inhibition limited migration in a subset of human glioma organotypic slice cultures. Our results identify MAP4K4 as a novel potential therapeutic target to limit glioblastoma invasion.


Assuntos
Neoplasias Encefálicas/patologia , Proteína 9 Associada à CRISPR , Sistemas CRISPR-Cas , Glioblastoma/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Neoplasias Encefálicas/genética , Glioblastoma/genética , Humanos , Invasividade Neoplásica/genética
3.
J Mater Chem B ; 4(42): 6803-6811, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28503305

RESUMO

Living cells are extensively being studied to build functional tissues that are useful for both fundamental and applied bioscience studies. Increasing evidence suggests that cell-cell adhesion controlled by intercellular cadherin junction plays important roles in the quality of the resulting engineered tissue. These findings prompted efforts to interrogate biological effects of cadherin at a molecular scale; however, few efforts were made to harness the effects of cadherin on cells cultured in an in vivo-like three dimensional matrix. To this end, this study reports a hydrogel matrix three dimensionally functionalized with a controlled number of Fc-tagged recombinant N-cadherins (N-Cad-Fc). To retain the desired conformation of N-Cad, these cadherins were immobilized and oriented to the gel by anti-Fc-antibodies chemically coupled to gels. The gels were processed to present N-Cad-Fc in uniaxially aligned microchannels or randomly oriented micropores. Culturing cortical cells in the functionalized gels generated a large fraction of neurons that are functional as indicated by increased intracellular calcium ion concentrations with the microchanneled gel. In contrast, direct N-Cad-Fc immobilization to microchannel or micropore walls of the gel limited the growth of neurons and increased the glial to neuron ratio. The results of this study will be highly useful to organize a wide array of cadherin molecules in a series of biomaterials used for three-dimensional cell culture and to regulate phenotypic activities of tissue-forming cells in an elaborate manner.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa