Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 123(23): 13209-13290, 2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-37862151

RESUMO

Pulmonary surfactant is a critical component of lung function in healthy individuals. It functions in part by lowering surface tension in the alveoli, thereby allowing for breathing with minimal effort. The prevailing thinking is that low surface tension is attained by a compression-driven squeeze-out of unsaturated phospholipids during exhalation, forming a film enriched in saturated phospholipids that achieves surface tensions close to zero. A thorough review of past and recent literature suggests that the compression-driven squeeze-out mechanism may be erroneous. Here, we posit that a surfactant film enriched in saturated lipids is formed shortly after birth by an adsorption-driven sorting process and that its composition does not change during normal breathing. We provide biophysical evidence for the rapid formation of an enriched film at high surfactant concentrations, facilitated by adsorption structures containing hydrophobic surfactant proteins. We examine biophysical evidence for and against the compression-driven squeeze-out mechanism and propose a new model for surfactant function. The proposed model is tested against existing physiological and pathophysiological evidence in neonatal and adult lungs, leading to ideas for biophysical research, that should be addressed to establish the physiological relevance of this new perspective on the function of the mighty thin film that surfactant provides.


Assuntos
Surfactantes Pulmonares , Recém-Nascido , Humanos , Surfactantes Pulmonares/química , Surfactantes Pulmonares/metabolismo , Fosfolipídeos/química , Tensoativos , Tensão Superficial , Fenômenos Químicos
2.
Vet Pathol ; 60(2): 214-225, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36625178

RESUMO

Bronchopneumonia with interstitial pneumonia (BIP) has been considered a variant of acute interstitial pneumonia (AIP) rather than a distinct disease. This study compared 18 BIP, 24 bronchopneumonia (BP), and 13 AIP cases in feedlot beef cattle. Grossly, BIP cases typically had cranioventral lung lesions of similar morphology and extent as BP cases, but the caudodorsal lung appeared overinflated, bulged on section, and had interlobular edema and emphysema. Gross diagnosis of BIP had 83% sensitivity and 73% specificity relative to histopathology. Histologic lesions of BIP in cranioventral areas were of chronic BP, while caudodorsal lesions included alveolar and bronchiolar damage and inflammation, interstitial hypercellularity, and multifocal hemorrhages. In BIP cases, cranioventral lung lesions were more chronic than caudodorsal lesions. Histologic scores and microbiology data were comparable in cranioventral lung of BIP versus BP cases and caudodorsal lung of BIP versus AIP cases, with differences reflecting a more chronic disease involving less virulent bacteria in BIP versus BP. Mycoplasma bovis infection was similarly frequent among groups, and a viral cause of BIP was not identified. Lesion morphology and similar blood cytokine concentrations among groups argued against sepsis as a cause of lung injury. Surfactant dysfunction was identified in BIP and BP, and was only partially the result of protein exudation. These and other findings establish BIP as a distinct condition in which chronic cranioventral BP precedes acute caudodorsal interstitial lung disease, supporting a role of chronic inflammation in heightened sensitivity to 3-methylindole or another lung toxicant.


Assuntos
Broncopneumonia , Doenças dos Bovinos , Doenças Pulmonares Intersticiais , Bovinos , Animais , Broncopneumonia/microbiologia , Broncopneumonia/patologia , Broncopneumonia/veterinária , Doenças dos Bovinos/patologia , Doenças Pulmonares Intersticiais/patologia , Doenças Pulmonares Intersticiais/veterinária , Pulmão/patologia , Inflamação/patologia , Inflamação/veterinária
3.
Can J Physiol Pharmacol ; 99(5): 556-560, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-32916058

RESUMO

Fetal growth restriction can affect health outcomes in postnatal life. This study tested the hypothesis that the response to an inflammatory pulmonary insult is altered in pediatric fetal growth restricted rats. Using a low-protein diet during gestation and postnatal life, growth-restricted male and female rats and healthy control rats were exposed to an inflammatory insult via the intratracheal instillation of heat-killed bacteria. After 6 h, animal lungs were examined for lung inflammation and status of the surfactant system. The results showed that in response to an inflammatory insult, neutrophil infiltration was decreased in both male and female rats in the growth-restricted animals compared with the control rats. The amount of surfactant was increased in the growth-restricted animals compared with the control rats, regardless of the inflammatory insult. It is concluded that fetal growth restriction results in increased surfactant and altered neutrophil responses following pulmonary insult.


Assuntos
Dieta com Restrição de Proteínas , Pulmão , Animais , Feminino , Retardo do Crescimento Fetal , Gravidez , Ratos
4.
J Bacteriol ; 202(22)2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-32868405

RESUMO

Although the GraS sensor kinase of Staphylococcus aureus is known for the sensing of and resistance to cationic antimicrobial peptides (CAMPs), we recently established that it also signals in response to acidic pH, which is encountered on human skin concurrently with CAMPs, antimicrobial unsaturated free fatty acids (uFFA), and calcium. We therefore evaluated how these environmental signals would affect GraS function and resistance to antimicrobial uFFA. Growth at pH 5.5 promoted increased resistance of S. aureus USA300 to linoleic and arachidonic acids but not palmitoleic or sapienic acid. However, enhanced resistance to these C16:1 uFFA was achieved by supplementing acidic medium with 0.5 mM calcium or subinhibitory CAMPs. Enhanced resistance to uFFA at acidic pH was dependent on GraS and GraS-dependent expression of the lysyl-phosphatidylglycerol synthase enzyme MprF, through a mechanism that did not require the lysyl-transferase function of MprF. In addition to enhanced resistance to antimicrobial uFFA, acidic pH also promoted increased production of secreted proteases in a GraS-dependent manner. During growth at pH 5.5, downstream phenotypes of signaling through GraS, including resistance to uFFA, MprF-dependent addition of positive charge to the cell surface, and increased production of secreted proteases, all occurred independently of acidic amino acids in the extracytoplasmic sensor loop of GraS that were previously found to be required for sensing of CAMPs. Cumulatively, our data indicate that signaling through GraS at acidic pH occurs through a mechanism that is distinct from that described for CAMPs, leading to increased resistance to antimicrobial uFFA and production of secreted proteases.IMPORTANCEStaphylococcus aureus asymptomatically colonizes 30% of humans but is also a leading cause of infectious morbidity and mortality. Since infections are typically initiated by the same strain associated with asymptomatic colonization of the nose or skin, it is important to understand how the microbe can endure exposure to harsh conditions that successfully restrict the growth of other bacteria, including a combination of acidic pH, antimicrobial peptides, and antimicrobial fatty acids. The significance of our research is in showing that acidic pH combined with antimicrobial peptide or environmental calcium can signal through a single membrane sensor protein to promote traits that may aid in survival, including modification of cell surface properties, increased resistance to antimicrobial fatty acids, and enhanced production of secreted proteases.


Assuntos
Ácidos Graxos Insaturados/química , Proteínas Quinases/genética , Transdução de Sinais , Staphylococcus aureus/enzimologia , Peptídeos Catiônicos Antimicrobianos/química , Proteínas de Bactérias/genética , Membrana Celular/metabolismo , Farmacorresistência Bacteriana , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Lisina/genética , Testes de Sensibilidade Microbiana , Fosfatidilgliceróis/genética , Staphylococcus aureus/genética
5.
Exp Lung Res ; 45(5-6): 113-122, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31195852

RESUMO

Purpose: Advancing age leads to changes to the respiratory system associated with increased susceptibility to lung diseases, and exercise may counteract this effect. To explore the underlying processes, we investigated the effects of aging and exercise on lung mechanics, alveolar macrophage function, and surfactant pools and activity, in mice. It was hypothesized that aging would impact lung mechanics, macrophage polarization, and the status of the surfactant system, and that these changes would be mitigated by exercise. Methods: Male C57BL/6 mice were housed from 2-3 to 22 months, for the aged group, or until 4 months of age for young mice. Mice in both groups were randomized to voluntarily running exercise or to non-exercise, for a 2-month period. Mice were euthanized and lung mechanics were analyzed using a flexiVent ventilator. Subsequently, the lungs were lavaged to obtain pulmonary surfactant and alveolar macrophages. Pulmonary surfactant was analyzed for pool sizes and activity whereas alveolar macrophages were examined for response to pro and anti-inflammatory stimuli. Results: Changes in lung mechanics, such as increased compliance and decreased airway resistance, were associated with aging but were not affected by exercise. The quantity as well as the biophysical activity of the pulmonary surfactant system was unaffected by either aging or exercise. More alveolar macrophages were recovered from exercising aged mice compared to both the young and non-exercising groups. Macrophages in this aged exercise group were more responsive to an anti-inflammatory stimulus. Conclusions: Our data supports previous literature that suggest the development of emphysema-like alterations to lung mechanics with aging. This effect was independent of exercise. Our data also indicates that surfactant is unaffected by aging and exercise. Alveolar macrophage properties and numbers were affected by exercise in the aging lung and may represent the main, potentially beneficial, effect of exercise on the pulmonary system.


Assuntos
Envelhecimento/fisiologia , Macrófagos Alveolares/fisiologia , Condicionamento Físico Animal/fisiologia , Surfactantes Pulmonares , Mecânica Respiratória , Animais , Masculino , Camundongos Endogâmicos C57BL , Distribuição Aleatória
6.
Infect Immun ; 85(12)2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28947647

RESUMO

The development of antibiotic resistance by Pseudomonas aeruginosa is a major concern in the treatment of bacterial pneumonia. In the search for novel anti-infective therapies, the chicken-derived peptide cathelicidin-2 (CATH-2) has emerged as a potential candidate, with strong broad-spectrum antimicrobial activity and the ability to limit inflammation by inhibiting Toll-like receptor 2 (TLR2) and TLR4 activation. However, as it is unknown how CATH-2 affects inflammation in vivo, we investigated how CATH-2-mediated killing of P. aeruginosa affects lung inflammation in a murine model. First, murine macrophages were used to determine whether CATH-2-mediated killing of P. aeruginosa reduced proinflammatory cytokine production in vitro Next, a murine lung model was used to analyze how CATH-2-mediated killing of P. aeruginosa affects neutrophil and macrophage recruitment as well as cytokine/chemokine production in the lung. Our results show that CATH-2 kills P. aeruginosa in an immunogenically silent manner both in vitro and in vivo Treatment with CATH-2-killed P. aeruginosa showed reduced neutrophil recruitment to the lung as well as inhibition of cytokine and chemokine production, compared to treatment with heat- or gentamicin-killed bacteria. Together, these results show the potential for CATH-2 as a dual-activity antibiotic in bacterial pneumonia, which can both kill P. aeruginosa and prevent excessive inflammation.


Assuntos
Peptídeos Catiônicos Antimicrobianos/imunologia , Inflamação/prevenção & controle , Pulmão/microbiologia , Pneumonia Bacteriana/imunologia , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Linhagem Celular , Quimiocinas/imunologia , Galinhas/imunologia , Citocinas/imunologia , Modelos Animais de Doenças , Imunidade Inata , Inflamação/imunologia , Pulmão/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Pneumonia Bacteriana/prevenção & controle , Infecções por Pseudomonas/veterinária
7.
Cell Tissue Res ; 367(3): 495-509, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27796509

RESUMO

Acute respiratory distress syndrome (ARDS) is a disease with a variety of causes and is defined by severe hypoxemia. Whereas ARDS carries a mortality of approximately 30 %, patients that survive may ultimately regain near normal pulmonary physiology. The critical pathophysiological processes in ARDS are alveolar barrier dysfunction and overwhelming inflammation. This encompasses damage to the epithelial and endothelial layers, thickening of the interstitial matrix, edema with inactivation of pulmonary surfactant at the alveolar surface and marked inflammation mediated by infiltrating neutrophils and pro-inflammatory macrophages. For patients that survive the disease, these are the critical processes that require repair and remodeling to allow for the recovery of ARDS. As such, the current review focuses on the experimental studies that have begun to elucidate the mechanisms involved in restoring the alveolar barrier following injury.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Pulmão/fisiopatologia , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/terapia , Animais , Humanos , Pulmão/patologia , Modelos Biológicos , Regeneração , Resultado do Tratamento
8.
Crit Care ; 21(1): 210, 2017 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-28789683

RESUMO

BACKGROUND: Despite many animal studies and clinical trials, mortality in sepsis remains high. This may be due to the fact that most experimental studies of sepsis employ young animals, whereas the majority of septic patients are elderly (60 - 70 years). The objective of the present study was to examine the sepsis-induced inflammatory and pro-coagulant responses in aged mice. Since running exercise protects against a variety of diseases, we also examined the effect of voluntary running on septic responses in aged mice. METHODS: Male C57BL/6 mice were housed in our institute from 2-3 to 22 months (an age mimicking that of the elderly). Mice were prevented from becoming obese by food restriction (given 70-90% of ad libitum consumption amount). Between 20 and 22 months, a subgroup of mice ran voluntarily on wheels, alternating 1-3 days of running with 1-2 days of rest. At 22 months, mice were intraperitoneally injected with sterile saline (control) or 3.75 g/kg fecal slurry (septic). At 7 h post injection, we examined (1) neutrophil influx in the lung and liver by measuring myeloperoxidase and/or neutrophil elastase in the tissue homogenates by spectrophotometry, (2) interleukin 6 (IL6) and KC in the lung lavage by ELISA, (3) pulmonary surfactant function by measuring percentage of large aggregates, (4) capillary plugging (pro-coagulant response) in skeletal muscle by intravital microscopy, (5) endothelial nitric oxide synthase (eNOS) protein in skeletal muscle (eNOS-derived NO is putative inhibitor of capillary plugging) by immunoblotting, and (6) systemic blood platelet counts by hemocytometry. RESULTS: Sepsis caused high levels of pulmonary myeloperoxidase, elastase, IL6, KC, liver myeloperoxidase, and capillary plugging. Sepsis also caused low levels of surfactant function and platelet counts. Running exercise increased eNOS protein and attenuated the septic responses. CONCLUSIONS: Voluntary running protects against exacerbated sepsis-induced inflammatory and pro-coagulant responses in aged mice. Protection against pro-coagulant responses may involve eNOS upregulation. The present discovery in aged mice calls for clinical investigation into potential beneficial effects of exercise on septic outcomes in the elderly.


Assuntos
Corrida/fisiologia , Sepse/fisiopatologia , Envelhecimento/metabolismo , Envelhecimento/fisiologia , Análise de Variância , Animais , Ensaio de Imunoadsorção Enzimática/métodos , Interleucina-6/análise , Interleucina-6/sangue , Elastase de Leucócito/análise , Elastase de Leucócito/sangue , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peroxidase/análise , Peroxidase/sangue
9.
Biochim Biophys Acta ; 1848(3): 813-20, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25522687

RESUMO

The ability of pulmonary surfactant to reduce surface tension at the alveolar surface is impaired in various lung diseases. Recent animal studies indicate that elevated levels of cholesterol within surfactant may contribute to its inhibition. It was hypothesized that elevated cholesterol levels within surfactant inhibit human surfactant biophysical function and that these effects can be reversed by surfactant protein A (SP-A). The initial experiment examined the function of surfactant from mechanically ventilated trauma patients in the presence and absence of a cholesterol sequestering agent, methyl-ß-cyclodextrin. The results demonstrated improved surface activity when cholesterol was sequestered in vitro using a captive bubble surfactometer (CBS). These results were explored further by reconstitution of surfactant with various concentrations of cholesterol with and without SP-A, and testing of the functionality of these samples in vitro with the CBS and in vivo using surfactant depleted rats. Overall, the results consistently demonstrated that surfactant function was inhibited by levels of cholesterol of 10% (w/w phospholipid) but this inhibition was mitigated by the presence of SP-A. It is concluded that cholesterol-induced surfactant inhibition can actively contribute to physiological impairment of the lungs in mechanically ventilated patients and that SP-A levels may be important to maintain surfactant function in the presence of high cholesterol within surfactant.


Assuntos
Colesterol/metabolismo , Proteína A Associada a Surfactante Pulmonar/metabolismo , Respiração Artificial/métodos , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Colesterol/farmacologia , Feminino , Humanos , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/fisiopatologia , Doenças Pulmonares Intersticiais/metabolismo , Doenças Pulmonares Intersticiais/fisiopatologia , Masculino , Microscopia de Força Atômica , Pessoa de Meia-Idade , Oxigênio/sangue , Fosfolipídeos/metabolismo , Fosfolipídeos/farmacologia , Pressão , Proteína A Associada a Surfactante Pulmonar/farmacologia , Surfactantes Pulmonares/metabolismo , Surfactantes Pulmonares/farmacologia , Ratos , Tensão Superficial/efeitos dos fármacos , Adulto Jovem , beta-Ciclodextrinas/metabolismo , beta-Ciclodextrinas/farmacologia
10.
Exp Lung Res ; 42(7): 365-379, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27676418

RESUMO

BACKGROUND: The acute respiratory distress syndrome (ARDS) is a complex pulmonary disorder in which the local release of cytokines and chemokines appears central to the pathophysiology. OBJECTIVE: Based on the known role of matrix metalloproteinase-3 (MMP3) in inflammatory processes, the objective was to examine the role of MMP3 in the pathogenesis of ARDS through the modulation of pulmonary inflammation. MATERIALS AND METHODS: Female and male, wild type (MMP3+/+) and knock out (MMP3-/-) mice were exposed to two, clinically relevant models of ARDS including (i) lipopolysaccharide (LPS)-induced lung injury, and (ii) hydrochloric acid-induced lung injury. Parameters of lung injury and inflammation were assessed through measurements in lung lavage including total protein content, inflammatory cell influx, and concentrations of mediators such as TNF-α, IL-6, G-CSF, CXCL1, CXCL2, and CCL2. Lung histology and compliance were also evaluated in the LPS model of injury. RESULTS: Following intra-tracheal LPS instillation, all mice developed lung injury, as measured by an increase in lavage neutrophils, and decrease in lung compliance, with no overall effect of genotype observed. Increased concentrations of lavage inflammatory cytokines and chemokines were also observed following LPS injury, however, LPS-instilled female MMP3-/- mice had lower levels of inflammatory mediators compared to LPS-instilled female MMP3+/+ mice. This effect of the genotype was not observed in male mice. Similar findings, including the MMP3-related sex differences, were also observed after acid-induced lung injury. CONCLUSION: MMP3 contributes to the pathogenesis of ARDS, by affecting the pulmonary inflammatory response in female mice in relevant models of lung injury.


Assuntos
Metaloproteinase 3 da Matriz/farmacologia , Pneumonia/induzido quimicamente , Síndrome do Desconforto Respiratório/etiologia , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Feminino , Humanos , Ácido Clorídrico/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Metaloproteinase 3 da Matriz/genética , Camundongos , Fatores Sexuais
11.
Can J Physiol Pharmacol ; 94(6): 682-5, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27096327

RESUMO

The acute respiratory distress syndrome (ARDS) is characterized by arterial hypoxemia accompanied by severe inflammation and alterations to the pulmonary surfactant system. Published data has demonstrated a protective effect of matrix metalloproteinase-3 (Mmp3) deficiency against the inflammatory response associated with ARDS; however, the effect of Mmp3 on physiologic parameters and alterations to surfactant have not been previously studied. It was hypothesized that Mmp3 deficient (Mmp3(-/-)) mice would be protected against lung dysfunction associated with ARDS and maintain a functional pulmonary surfactant system. Wild type (WT) and Mmp3(-/-) mice were subjected to acid-aspiration followed by mechanical ventilation. Mmp3(-/-) mice maintained higher arterial oxygenation compared with WT mice at the completion of ventilation. Significant increase in functional large aggregate surfactant forms were observed in Mmp3(-/-) mice compared with WT mice. These findings further support a role of Mmp3 as an attractive therapeutic target for drug development in the setting of ARDS.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Modelos Animais de Doenças , Metaloproteinase 3 da Matriz/deficiência , Surfactantes Pulmonares/metabolismo , Síndrome do Desconforto Respiratório/metabolismo , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Distribuição Aleatória , Síndrome do Desconforto Respiratório/patologia
12.
Antimicrob Agents Chemother ; 59(6): 3075-83, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25753641

RESUMO

Antibiotic-resistant bacterial infections represent an emerging health concern in clinical settings, and a lack of novel developments in the pharmaceutical pipeline is creating a "perfect storm" for multidrug-resistant bacterial infections. Antimicrobial peptides (AMPs) have been suggested as future therapeutics for these drug-resistant bacteria, since they have potent broad-spectrum activity, with little development of resistance. Due to the unique structure of the lung, bacterial pneumonia has the additional problem of delivering antimicrobials to the site of infection. One potential solution is coadministration of AMPs with exogenous surfactant, allowing for distribution of the peptides to distal airways and opening of collapsed lung regions. The objective of this study was to test various surfactant-AMP mixtures with regard to maintaining pulmonary surfactant biophysical properties and bactericidal functions. We compared the properties of four AMPs (CATH-1, CATH-2, CRAMP, and LL-37) suspended in bovine lipid-extract surfactant (BLES) by assessing surfactant-AMP mixture biophysical and antimicrobial functions. Antimicrobial activity was tested against methillicin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. All AMP/surfactant mixtures exhibited an increase of spreading compared to a BLES control. BLES+CATH-2 mixtures had no significantly different minimum surface tension versus the BLES control. Compared to the other cathelicidins, CATH-2 retained the most bactericidal activity in the presence of BLES. The BLES+CATH-2 mixture appears to be an optimal surfactant-AMP mixture based on in vitro assays. Future directions involve investigating the potential of this mixture in animal models of bacterial pneumonia.


Assuntos
Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Pneumonia Bacteriana/microbiologia , Surfactantes Pulmonares/farmacologia , Surfactantes Pulmonares/uso terapêutico , Animais , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bovinos , Masculino , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
13.
Biochim Biophys Acta ; 1828(8): 1707-14, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23506681

RESUMO

Pulmonary surfactant lines the entire alveolar surface, serving primarily to reduce the surface tension at the air-liquid interface. Surfactant films adsorb as a monolayer interspersed with multilayers with surfactant lipids segregating into different phases or domains. Temperature variation, which influences lipid physical properties, affects both the lipid phase segregation and the surface activity of surfactants. In hibernating animals, such as 13-lined ground squirrels, which vary their body temperature, surfactant must be functional over a wide range of temperatures. We hypothesised that surfactant from the 13-lined ground squirrel, Ictidomys tridecemlineatus, would undergo appropriate lipid structural re-arrangements at air-water interfaces to generate phase separation, sufficient to attain the low surface tensions required to remain stable at both low and high body temperatures. Here, we examined pressure-area isotherms at 10, 25 and 37°C and found that surfactant films from both hibernating and summer-active squirrels reached their highest surface pressure on the Wilhelmy-Langmuir balance at 10°C. Epifluorescence microscopy demonstrated that films of hibernating squirrel surfactant display different lipid micro-domain organisation characteristics than surfactant from summer-active squirrels. These differences were also reflected at the nanoscale as determined by atomic force microscopy. Such re-arrangement of lipid domains in the relatively more fluid surfactant films of hibernating squirrels may contribute to overcoming collapse pressures and support low surface tension during the normal breathing cycle at low body temperatures.


Assuntos
Adaptação Fisiológica , Hibernação/fisiologia , Lipídeos/química , Surfactantes Pulmonares/química , Animais , Microscopia de Força Atômica , Sciuridae , Propriedades de Superfície , Tensão Superficial , Temperatura
14.
Respiration ; 87(5): 416-27, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24662316

RESUMO

BACKGROUND: Apolipoprotein E (apoE) has been shown to play a pivotal role in the development of cardiovascular disease, attributable to its function in lipid trafficking and immune modulating properties; however, its role in modulating inflammation in the setting of acute lung injury (ALI) is unknown. OBJECTIVE: To determine whether apoE-deficient mice (apoE-/-) are more susceptible to ALI compared to wild-type (WT) animals. METHODS: Two independent models of ALI were employed. Firstly, WT and apoE-/- mice were randomized to acid aspiration (50 µl of 0.1 N hydrochloric acid) followed by 4 h of mechanical ventilation. Secondly, WT and apoE-/- mice were randomized to 72 h of hyperoxia exposure or room air. Thereafter, the intrinsic responses of WT and apoE-/- mice were assessed using the isolated perfused mouse lung (IPML) setup. Finally, based on elevated levels of oxidized low-density lipoprotein (oxLDL) in apoE-/-, the effect of oxLDL on lung endothelial permeability and inflammation was assessed. RESULTS: In both in vivo models, apoE-/- mice demonstrated greater increases in lung lavage protein levels, neutrophil counts, and cytokine expression (p < 0.05) compared to WT mice. Experiments utilizing the IPML setup demonstrated no differences in intrinsic lung responses to injury between apoE-/- and WT mice, suggesting the presence of a circulating factor as being responsible for the in vivo observations. Finally, the exposure of lung endothelial cells to oxLDL resulted in increased monolayer permeability and IL-6 release compared to native (nonoxidized) LDL. CONCLUSIONS: Our findings demonstrate a susceptibility of apoE-/- animals to ALI that may occur, in part, due to elevated levels of oxLDL.


Assuntos
Lesão Pulmonar Aguda/genética , Apolipoproteínas E/genética , Lipoproteínas LDL/metabolismo , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/metabolismo , Animais , Modelos Animais de Doenças , Predisposição Genética para Doença , Ácido Clorídrico/toxicidade , Inflamação , Interleucina-6/metabolismo , Lipoproteínas LDL/farmacologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Camundongos , Camundongos Knockout , Permeabilidade/efeitos dos fármacos , Respiração Artificial/efeitos adversos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo
15.
Biochim Biophys Acta ; 1818(5): 1225-34, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22206628

RESUMO

The exact mechanism by which pulmonary surfactant films reach the very low surface tensions required to stabilize the alveoli at end expiration remains uncertain. We utilized the nanoscale sensitivity of atomic force microscopy (AFM) to examine phospholipid (PL) phase transition and multilayer formation for two Langmuir-Blodgett (LB) systems: a simple 3 PL surfactant-like mixture and the more complex bovine lipid extract surfactant (BLES). AFM height images demonstrated that both systems develop two types of liquid condensed (LC) domains (micro- and nano-sized) within a liquid expanded phase (LE). The 3 PL mixture failed to form significant multilayers at high surface pressure (π while BLES forms an extensive network of multilayer structures containing up to three bilayers. A close examination of the progression of multilayer formation reveals that multilayers start to form at the edge of the solid-like LC domains and also in the fluid-like LE phase. We used the elemental analysis capability of time-of-flight secondary ion mass spectrometry (ToF-SIMS) to show that multilayer structures are enriched in unsaturated PLs while the saturated PLs are concentrated in the remaining interfacial monolayer. This supports a modified squeeze-out model where film compression results in the hydrophobic surfactant protein-dependent formation of unsaturated PL-rich multilayers which remain functionally associated with a monolayer enriched in disaturated PL species. This allows the surface film to attain low surface tensions during compression and maintain values near equilibrium during expansion.


Assuntos
Bicamadas Lipídicas/química , Transição de Fase , Fosfolipídeos/química , Surfactantes Pulmonares/química , Animais , Bovinos , Bicamadas Lipídicas/metabolismo , Microscopia de Força Atômica , Fosfolipídeos/metabolismo , Alvéolos Pulmonares/química , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/metabolismo
16.
Biochim Biophys Acta ; 1818(7): 1581-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22387458

RESUMO

The interfacial surface tension of the lung is regulated by phospholipid-rich pulmonary surfactant films. Small changes in temperature affect surfactant structure and function in vitro. We compared the compositional, thermodynamic and functional properties of surfactant from hibernating and summer-active 13-lined ground squirrels (Ictidomys tridecemlineatus) with porcine surfactant to understand structure-function relationships in surfactant membranes and films. Hibernating squirrels had more surfactant large aggregates with more fluid monounsaturated molecular species than summer-active animals. The latter had more unsaturated species than porcine surfactant. Cold-adapted surfactant membranes displayed gel-to-fluid transitions at lower phase transition temperatures with reduced enthalpy. Both hibernating and summer-active squirrel surfactants exhibited lower enthalpy than porcine surfactant. LAURDAN fluorescence and DPH anisotropy revealed that surfactant bilayers from both groups of squirrels possessed similar ordered phase characteristics at low temperatures. While ground squirrel surfactants functioned well during dynamic cycling at 3, 25, and 37 degrees C, porcine surfactant demonstrated poorer activity at 3 degrees C but was superior at 37 degrees C. Consequently the surfactant composition of ground squirrels confers a greater thermal flexibility relative to homeothermic mammals, while retaining tight lipid packing at low body temperatures. This may represent the most critical feature contributing to sustained stability of the respiratory interface at low lung volumes. Thus, while less effective than porcine surfactant at 37 degrees C, summer-active surfactant functions adequately at both 37 degrees C and 3 degrees C allowing these animals to enter hibernation. Here further compositional alterations occur which improve function at low temperatures by maintaining adequate stability at low lung volumes and when temperature increases during arousal from hibernation.


Assuntos
Regulação da Temperatura Corporal , Membrana Celular/química , Fluidez de Membrana , Surfactantes Pulmonares/química , 2-Naftilamina/análogos & derivados , 2-Naftilamina/química , Adaptação Fisiológica , Animais , Anisotropia , Líquido da Lavagem Broncoalveolar/química , Varredura Diferencial de Calorimetria , Membrana Celular/metabolismo , Difenilexatrieno/química , Hibernação , Lauratos/química , Fosfolipídeos/química , Fosfolipídeos/metabolismo , Surfactantes Pulmonares/metabolismo , Sciuridae , Estações do Ano , Espectrometria de Fluorescência , Propriedades de Superfície , Suínos , Temperatura , Termodinâmica
17.
BMC Pulm Med ; 13: 67, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-24256698

RESUMO

BACKGROUND: Mechanical ventilation (MV) is an essential supportive therapy for acute lung injury (ALI); however it can also contribute to systemic inflammation. Since pulmonary surfactant has anti-inflammatory properties, the aim of the study was to investigate the effect of exogenous surfactant administration on ventilation-induced systemic inflammation. METHODS: Mice were randomized to receive an intra-tracheal instillation of a natural exogenous surfactant preparation (bLES, 50 mg/kg) or no treatment as a control. MV was then performed using the isolated and perfused mouse lung (IPML) set up. This model allowed for lung perfusion during MV. In experiment 1, mice were exposed to mechanical ventilation only (tidal volume =20 mL/kg, 2 hours). In experiment 2, hydrochloric acid or air was instilled intra-tracheally four hours before applying exogenous surfactant and ventilation (tidal volume =5 mL/kg, 2 hours). RESULTS: For both experiments, exogenous surfactant administration led to increased total and functional surfactant in the treated groups compared to the controls. Exogenous surfactant administration in mice exposed to MV only did not affect peak inspiratory pressure (PIP), lung IL-6 levels and the development of perfusate inflammation compared to non-treated controls. Acid injured mice exposed to conventional MV showed elevated PIP, lung IL-6 and protein levels and greater perfusate inflammation compared to air instilled controls. Instillation of exogenous surfactant did not influence the development of lung injury. Moreover, exogenous surfactant was not effective in reducing the concentration of inflammatory cytokines in the perfusate. CONCLUSIONS: The data indicates that exogenous surfactant did not mitigate ventilation-induced systemic inflammation in our models. Future studies will focus on altering surfactant composition to improve its immuno-modulating activity.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Lesão Pulmonar Aguda/terapia , Citocinas/metabolismo , Inflamação/prevenção & controle , Pulmão/metabolismo , Surfactantes Pulmonares/uso terapêutico , Lesão Pulmonar Aguda/induzido quimicamente , Animais , Líquido da Lavagem Broncoalveolar/química , Citocinas/análise , Modelos Animais de Doenças , Eicosanoides/análise , Eicosanoides/metabolismo , Ácido Clorídrico , Inflamação/etiologia , Inflamação/metabolismo , Interleucina-6/análise , Interleucina-6/metabolismo , Pulmão/patologia , Masculino , Camundongos , Permeabilidade/efeitos dos fármacos , Respiração com Pressão Positiva/efeitos adversos , Capacidade Pulmonar Total/efeitos dos fármacos
18.
Biochim Biophys Acta ; 1808(3): 614-21, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21110942

RESUMO

Pulmonary surfactant is a complex lipid-protein mixture whose main function is to reduce the surface tension at the air-liquid interface of alveoli to minimize the work of breathing. The exact mechanism by which surfactant monolayers and multilayers are formed and how they lower surface tension to very low values during lateral compression remains uncertain. We used time-of-flight secondary ion mass spectrometry to study the lateral organization of lipids and peptide in surfactant preparations ranging in complexity. We show that we can successfully determine the location of phospholipids, cholesterol and a peptide in surfactant Langmuir-Blodgett films and we can determine the effect of cholesterol and peptide addition. A thorough understanding of the lateral organization of PS interfacial films will aid in our understanding of the role of each component as well as different lipid-lipid and lipid-protein interactions. This may further our understanding of pulmonary surfactant function.


Assuntos
Bicamadas Lipídicas/metabolismo , Lipídeos/química , Pulmão/metabolismo , Proteínas/química , Alvéolos Pulmonares/metabolismo , Surfactantes Pulmonares/química , Espectrometria de Massa de Íon Secundário , Ar , Animais , Bovinos , Bicamadas Lipídicas/química , Proteínas/metabolismo , Surfactantes Pulmonares/metabolismo , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície , Tensão Superficial
19.
Exp Lung Res ; 37(7): 419-26, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21787233

RESUMO

Despite the use of lung-protective mechanical ventilation (MV), the mortality of patients with acute lung injury remains at 30 to 40%, predominantly due to multiorgan failure. The objective of this study was to determine the biological significance of lung-derived mediators on peripheral organ inflammation. The authors utilized an isolated perfused mouse lung model of lipopolysaccharide (LPS)-induced lung inflammation and protective MV to collect lung-derived mediators. Aliquots of perfusate from these animals (or appropriate controls) were then injected intravenously into a cohort of normal animals whose livers were subsequently assessed in vivo using intravital video microscopy. Perfusate from LPS-inflamed lungs contained significantly higher concentrations of inflammatory mediators than perfusate from saline-instilled lungs. Assessment of livers in the second cohort of animals 120 minutes after perfusate injection revealed decreased sinusoidal blood flow, leukocytosis, and increased cell death in those receiving perfusate from LPS-inflamed lungs compared to perfusate from saline controls. There were no differences between control animals that received pure perfusate or pure LPS mixed with perfusate. These results showed that lung-derived mediators had a significant biological effect on nonpulmonary organs within a short period of time after administration. Therapies targeting these mediators may prevent multiorgan failure and death in patients with acute lung injury.


Assuntos
Mediadores da Inflamação/farmacologia , Fígado/efeitos dos fármacos , Pulmão/química , Animais , Inflamação/induzido quimicamente , Lipopolissacarídeos , Camundongos , Microscopia de Vídeo , Perfusão , Respiração Artificial/efeitos adversos
20.
Respiration ; 81(4): 333-42, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21311175

RESUMO

BACKGROUND: Overwhelming systemic inflammation has been implicated in the progression of acute lung injury (ALI) leading to multiple organ failure (MOF) and death. Previous studies suggest that mechanical ventilation (MV) may be a key mediator of MOF through an upregulation of the systemic inflammatory response. OBJECTIVES: It was the aim of this study to investigate mechanisms whereby mechanical stress induced by different tidal volumes may contribute to the development of systemic inflammation and maladaptive peripheral organ responses in the setting of ALI. METHODS: An acid aspiration model of ALI was employed in 129X1/SVJ mice through an intratracheal administration of hydrochloric acid followed by MV employing either a low (5 ml/kg) or high (12.5 ml/kg) tidal volume ventilation for 120 min. The isolated perfused mouse lung setup was used to assess the specific contribution of the lung to systemic inflammation during MV. Furthermore, lung perfusate collected over the course of MV was used to assess the effects of lung-derived mediators on activation (expression of a proadhesive phenotype) of liver endothelial cells. RESULTS: High tidal volume MV of acid-injured lungs resulted in greater physiologic and histological indices of lung injury compared to control groups. Additionally, there was an immediate and significant release of multiple inflammatory mediators from the lung into the systemic circulation which resulted in greater levels of mRNA adhesion molecule expression in liver endothelial cells in vitro. CONCLUSIONS: This study suggests that MV, specifically tidal volume strategy, influences the development of MOF through an upregulation of lung-derived systemic inflammation resulting in maladaptive cellular changes in peripheral organs.


Assuntos
Lesão Pulmonar Aguda/fisiopatologia , Insuficiência de Múltiplos Órgãos/etiologia , Respiração Artificial , Volume de Ventilação Pulmonar , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/complicações , Lesão Pulmonar Aguda/patologia , Animais , Líquido da Lavagem Broncoalveolar/química , Moléculas de Adesão Celular/metabolismo , Quimiocinas/análise , Citocinas/análise , Células Endoteliais/metabolismo , Ácido Clorídrico , Inflamação , Pulmão/patologia , Complacência Pulmonar , Masculino , Camundongos , Camundongos Endogâmicos , Insuficiência de Múltiplos Órgãos/fisiopatologia , Respiração Artificial/métodos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa