RESUMO
The nervous system governs both ontogeny and oncology. Regulating organogenesis during development, maintaining homeostasis, and promoting plasticity throughout life, the nervous system plays parallel roles in the regulation of cancers. Foundational discoveries have elucidated direct paracrine and electrochemical communication between neurons and cancer cells, as well as indirect interactions through neural effects on the immune system and stromal cells in the tumor microenvironment in a wide range of malignancies. Nervous system-cancer interactions can regulate oncogenesis, growth, invasion and metastatic spread, treatment resistance, stimulation of tumor-promoting inflammation, and impairment of anti-cancer immunity. Progress in cancer neuroscience may create an important new pillar of cancer therapy.
Assuntos
Neoplasias , Neurociências , Humanos , Sistema Imunitário , Neoplasias/patologia , Neurônios/patologia , Microambiente TumoralRESUMO
Glioblastomas are incurable tumors infiltrating the brain. A subpopulation of glioblastoma cells forms a functional and therapy-resistant tumor cell network interconnected by tumor microtubes (TMs). Other subpopulations appear unconnected, and their biological role remains unclear. Here, we demonstrate that whole-brain colonization is fueled by glioblastoma cells that lack connections with other tumor cells and astrocytes yet receive synaptic input from neurons. This subpopulation corresponds to neuronal and neural-progenitor-like tumor cell states, as defined by single-cell transcriptomics, both in mouse models and in the human disease. Tumor cell invasion resembled neuronal migration mechanisms and adopted a Lévy-like movement pattern of probing the environment. Neuronal activity induced complex calcium signals in glioblastoma cells followed by the de novo formation of TMs and increased invasion speed. Collectively, superimposing molecular and functional single-cell data revealed that neuronal mechanisms govern glioblastoma cell invasion on multiple levels. This explains how glioblastoma's dissemination and cellular heterogeneity are closely interlinked.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Astrócitos/patologia , Encéfalo/patologia , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Camundongos , Invasividade Neoplásica , Neurônios/fisiologiaRESUMO
To improve immunotherapy for brain tumors, it is important to determine the principal intracranial site of T cell recruitment from the bloodstream and their intracranial route to brain tumors. Using intravital microscopy in mouse models of intracranial melanoma, we discovered that circulating T cells preferably adhered and extravasated at a distinct type of venous blood vessel in the tumor vicinity, peritumoral venous vessels (PVVs). Other vascular structures were excluded as alternative T cell routes to intracranial melanomas. Anti-PD-1/CTLA-4 immune checkpoint inhibitors increased intracranial T cell motility, facilitating migration from PVVs to the tumor and subsequently inhibiting intracranial tumor growth. The endothelial adhesion molecule ICAM-1 was particularly expressed on PVVs, and, in samples of human brain metastases, ICAM-1 positivity of PVV-like vessels correlated with intratumoral T cell infiltration. These findings uncover a distinct mechanism by which the immune system can access and control brain tumors and potentially influence other brain pathologies.
RESUMO
Diffuse gliomas, particularly glioblastomas, are incurable brain tumours1. They are characterized by networks of interconnected brain tumour cells that communicate via Ca2+ transients2-6. However, the networks' architecture and communication strategy and how these influence tumour biology remain unknown. Here we describe how glioblastoma cell networks include a small, plastic population of highly active glioblastoma cells that display rhythmic Ca2+ oscillations and are particularly connected to others. Their autonomous periodic Ca2+ transients preceded Ca2+ transients of other network-connected cells, activating the frequency-dependent MAPK and NF-κB pathways. Mathematical network analysis revealed that glioblastoma network topology follows scale-free and small-world properties, with periodic tumour cells frequently located in network hubs. This network design enabled resistance against random damage but was vulnerable to losing its key hubs. Targeting of autonomous rhythmic activity by selective physical ablation of periodic tumour cells or by genetic or pharmacological interference with the potassium channel KCa3.1 (also known as IK1, SK4 or KCNN4) strongly compromised global network communication. This led to a marked reduction of tumour cell viability within the entire network, reduced tumour growth in mice and extended animal survival. The dependency of glioblastoma networks on periodic Ca2+ activity generates a vulnerability7 that can be exploited for the development of novel therapies, such as with KCa3.1-inhibiting drugs.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Camundongos , Encéfalo/metabolismo , Encéfalo/patologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , NF-kappa B/metabolismo , Sistema de Sinalização das MAP Quinases , Sinalização do Cálcio , Morte Celular , Análise de Sobrevida , Cálcio/metabolismoRESUMO
A network of communicating tumour cells that is connected by tumour microtubes mediates the progression of incurable gliomas. Moreover, neuronal activity can foster malignant behaviour of glioma cells by non-synaptic paracrine and autocrine mechanisms. Here we report a direct communication channel between neurons and glioma cells in different disease models and human tumours: functional bona fide chemical synapses between presynaptic neurons and postsynaptic glioma cells. These neurogliomal synapses show a typical synaptic ultrastructure, are located on tumour microtubes, and produce postsynaptic currents that are mediated by glutamate receptors of the AMPA subtype. Neuronal activity including epileptic conditions generates synchronised calcium transients in tumour-microtube-connected glioma networks. Glioma-cell-specific genetic perturbation of AMPA receptors reduces calcium-related invasiveness of tumour-microtube-positive tumour cells and glioma growth. Invasion and growth are also reduced by anaesthesia and the AMPA receptor antagonist perampanel, respectively. These findings reveal a biologically relevant direct synaptic communication between neurons and glioma cells with potential clinical implications.
Assuntos
Neoplasias Encefálicas/fisiopatologia , Progressão da Doença , Glioma/fisiopatologia , Sinapses/patologia , Animais , Neoplasias Encefálicas/ultraestrutura , Modelos Animais de Doenças , Glioma/ultraestrutura , Humanos , Camundongos , Microscopia Eletrônica de Transmissão , Neurônios/fisiologia , Receptores de AMPA/genética , Receptores de AMPA/metabolismoRESUMO
Glioblastoma is the most common malignant primary brain tumor with poor overall survival. Magnetic resonance imaging (MRI) is the main imaging modality for glioblastoma but has inherent shortcomings. The molecular and cellular basis of MR signals is incompletely understood. We established a ground truth-based image analysis platform to coregister MRI and light sheet microscopy (LSM) data to each other and to an anatomic reference atlas for quantification of 20 predefined anatomic subregions. Our pipeline also includes a segmentation and quantification approach for single myeloid cells in entire LSM datasets. This method was applied to three preclinical glioma models in male and female mice (GL261, U87MG, and S24), which exhibit different key features of the human glioma. Multiparametric MR data including T2-weighted sequences, diffusion tensor imaging, T2 and T2* relaxometry were acquired. Following tissue clearing, LSM focused on the analysis of tumor cell density, microvasculature, and innate immune cell infiltration. Correlated analysis revealed differences in quantitative MRI metrics between the tumor-bearing and the contralateral hemisphere. LSM identified tumor subregions that differed in their MRI characteristics, indicating tumor heterogeneity. Interestingly, MRI signatures, defined as unique combinations of different MRI parameters, differed greatly between the models. The direct correlation of MRI and LSM allows an in-depth characterization of preclinical glioma and can be used to decipher the structural, cellular, and, likely, molecular basis of tumoral MRI biomarkers. Our approach may be applied in other preclinical brain tumor or neurologic disease models, and the derived MRI signatures could ultimately inform image interpretation in a clinical setting.SIGNIFICANCE STATEMENT We established a histologic ground truth-based approach for MR image analyses and tested this method in three preclinical glioma models exhibiting different features of glioblastoma. Coregistration of light sheet microscopy to MRI allowed for an evaluation of quantitative MRI data in histologically distinct tumor subregions. Coregistration to a mouse brain atlas enabled a regional comparison of MRI parameters with a histologically informed interpretation of the results. Our approach is transferable to other preclinical models of brain tumors and further neurologic disorders. The method can be used to decipher the structural, cellular, and molecular basis of MRI signal characteristics. Ultimately, information derived from such analyses could strengthen the neuroradiological evaluation of glioblastoma as they enhance the interpretation of MRI data.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Glioma , Masculino , Feminino , Humanos , Animais , Camundongos , Glioblastoma/diagnóstico por imagem , Imagem de Tensor de Difusão , Microscopia , Glioma/diagnóstico por imagem , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologiaRESUMO
BACKGROUND: Glioblastoma is the most frequent and a particularly malignant primary brain tumor with no efficacy-proven standard therapy for recurrence. It has recently been discovered that excitatory synapses of the AMPA-receptor subtype form between non-malignant brain neurons and tumor cells. This neuron-tumor network connectivity contributed to glioma progression and could be efficiently targeted with the EMA/FDA approved antiepileptic AMPA receptor inhibitor perampanel in preclinical studies. The PerSurge trial was designed to test the clinical potential of perampanel to reduce tumor cell network connectivity and tumor growth with an extended window-of-opportunity concept. METHODS: PerSurge is a phase IIa clinical and translational treatment study around surgical resection of progressive or recurrent glioblastoma. In this multicenter, 2-arm parallel-group, double-blind superiority trial, patients are 1:1 randomized to either receive placebo or perampanel (n = 66 in total). It consists of a treatment and observation period of 60 days per patient, starting 30 days before a planned surgical resection, which itself is not part of the study interventions. Only patients with an expected safe waiting interval are included, and a safety MRI is performed. Tumor cell network connectivity from resected tumor tissue on single cell transcriptome level as well as AI-based assessment of tumor growth dynamics in T2/FLAIR MRI scans before resection will be analyzed as the co-primary endpoints. Secondary endpoints will include further imaging parameters such as pre- and postsurgical contrast enhanced MRI scans, postsurgical T2/FLAIR MRI scans, quality of life, cognitive testing, overall and progression-free survival as well as frequency of epileptic seizures. Further translational research will focus on additional biological aspects of neuron-tumor connectivity. DISCUSSION: This trial is set up to assess first indications of clinical efficacy and tolerability of perampanel in recurrent glioblastoma, a repurposed drug which inhibits neuron-glioma synapses and thereby glioblastoma growth in preclinical models. If perampanel proved to be successful in the clinical setting, it would provide the first evidence that interference with neuron-cancer interactions may indeed lead to a benefit for patients, which would lay the foundation for a larger confirmatory trial in the future. TRIAL REGISTRATION: EU-CT number: 2023-503938-52-00 30.11.2023.
Assuntos
Glioblastoma , Humanos , Glioblastoma/tratamento farmacológico , Glioblastoma/cirurgia , Qualidade de Vida , Recidiva Local de Neoplasia/tratamento farmacológico , Convulsões/tratamento farmacológico , Nitrilas/uso terapêutico , Piridonas/uso terapêutico , Resultado do Tratamento , Método Duplo-CegoRESUMO
BACKGROUND: Gliomas are highly invasive brain neoplasms. MRI is the most important tool to diagnose and monitor glioma but has shortcomings. In particular, the assessment of tumor cell invasion is insufficient. This is a clinical dilemma, as recurrence can arise from MRI-occult glioma cell invasion. HYPOTHESIS: Tumor cell invasion, tumor growth and radiotherapy alter the brain parenchymal microstructure and thus are assessable by diffusion tensor imaging (DTI) and MR elastography (MRE). STUDY TYPE: Experimental, animal model. ANIMAL MODEL: Twenty-three male NMRI nude mice orthotopically implanted with S24 patient-derived glioma cells (experimental mice) and 9 NMRI nude mice stereotactically injected with 1 µL PBS (sham-injected mice). FIELD STRENGTH/SEQUENCE: 2D and 3D T2-weighted rapid acquisition with refocused echoes (RARE), 2D echo planar imaging (EPI) DTI, 2D multi-slice multi-echo (MSME) T2 relaxometry, 3D MSME MRE at 900 Hz acquired at 9.4 T (675 mT/m gradient strength). ASSESSMENT: Longitudinal 4-weekly imaging was performed for up to 4 months. Tumor volume was assessed in experimental mice (n = 10 treatment-control, n = 13 radiotherapy). The radiotherapy subgroup and 5 sham-injected mice underwent irradiation (3 × 6 Gy) 9 weeks post-implantation/sham injection. MRI-/MRE-parameters were assessed in the corpus callosum and tumor core/injection tract. Imaging data were correlated to light sheet microscopy (LSM) and histology. STATISTICAL TESTS: Paired and unpaired t-tests, a P-value ≤0.05 was considered significant. RESULTS: From week 4 to 8, a significant callosal stiffening (4.44 ± 0.22 vs. 5.31 ± 0.29 kPa) was detected correlating with LSM-proven tumor cell invasion. This was occult to all other imaging metrics. Histologically proven tissue destruction in the tumor core led to an increased T2 relaxation time (41.65 ± 0.34 vs. 44.83 ± 0.66 msec) and ADC (610.2 ± 12.27 vs. 711.2 ± 13.42 × 10-6 mm2/s) and a softening (5.51 ± 0.30 vs. 4.24 ± 0.29 kPa) from week 8 to 12. Radiotherapy slowed tumor progression. DATA CONCLUSION: MRE is promising for the assessment of key glioma characteristics. EVIDENCE LEVEL: NA TECHNICAL EFFICACY: Stage 2.
RESUMO
Recent research indicates that glioblastomas exhibit different neural properties that successfully promote tumor growth, colonize the brain and resist standard treatment. This opens up opportunities for new therapeutic strategies giving rise to the new research field of cancer neuroscience at the interface between oncology and neuroscience. It has been observed that glioblastomas as well as other incurable brain tumor entities, form multicellular tumor networks through long cell projections called tumor microtubes that are molecularly controlled by neuronal developmental mechanisms. These networks provide the tumor with efficient communication and resilience to external perturbations and are tumor-intrinsic continuously activated by pacemaker-like tumor cells. In addition, neuron-tumor networks have been discovered that also exploit direct glutamatergic synaptic contacts between nerve cells and tumor cells. These different neuronal mechanisms of the glioblastoma networks contribute to malignancy and resistance, which is why strategies to separate these multicellular networks were developed and are currently being investigated in initial clinical trials with respect to their therapeutic suitability.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Encéfalo/patologia , NeurôniosRESUMO
Clinically relevant brain metastases (BMs) frequently form in cancer patients, with limited options for effective treatment. Circulating cancer cells must first permanently arrest in brain microvessels to colonize the brain, but the critical factors in this process are not well understood. Here, in vivo multiphoton laser-scanning microscopy of the entire brain metastatic cascade allowed unprecedented insights into how blood clot formation and von Willebrand factor (VWF) deposition determine the arrest of circulating cancer cells and subsequent brain colonization in mice. Clot formation in brain microvessels occurred frequently (>95%) and specifically at intravascularly arrested cancer cells, allowing their long-term arrest. An extensive clot embedded â¼20% of brain-arrested cancer cells, and those were more likely to successfully extravasate and form a macrometastasis. Mechanistically, the generation of tissue factor-mediated thrombin by cancer cells accounted for local activation of plasmatic coagulation in the brain. Thrombin inhibition by treatment with low molecular weight heparin or dabigatran and an anti-VWF antibody prevented clot formation, cancer cell arrest, extravasation, and the formation of brain macrometastases. In contrast, tumor cells were not able to directly activate platelets, and antiplatelet treatments did reduce platelet dispositions at intravascular cancer cells but did not reduce overall formation of BMs. In conclusion, our data show that plasmatic coagulation is activated early by intravascular tumor cells in the brain with subsequent clot formation, which led us to discover a novel and specific mechanism that is crucial for brain colonization. Direct or indirect thrombin and VWF inhibitors emerge as promising drug candidates for trials on prevention of BMs.
Assuntos
Coagulação Sanguínea , Neoplasias Encefálicas/sangue , Neoplasias da Mama/patologia , Melanoma/patologia , Células Neoplásicas Circulantes/patologia , Trombose/sangue , Animais , Neoplasias Encefálicas/etiologia , Neoplasias Encefálicas/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/complicações , Pontos de Checagem do Ciclo Celular , Modelos Animais de Doenças , Feminino , Humanos , Melanoma/sangue , Melanoma/complicações , Camundongos , Trombose/etiologia , Trombose/patologia , Fator de von Willebrand/análiseRESUMO
Glioblastoma (GB) is the most lethal brain tumor, and Wingless (Wg)-related integration site (WNT) pathway activation in these tumors is associated with a poor prognosis. Clinically, the disease is characterized by progressive neurological deficits. However, whether these symptoms result from direct or indirect damage to neurons is still unresolved. Using Drosophila and primary xenografts as models of human GB, we describe, here, a mechanism that leads to activation of WNT signaling (Wg in Drosophila) in tumor cells. GB cells display a network of tumor microtubes (TMs) that enwrap neurons, accumulate Wg receptor Frizzled1 (Fz1), and, thereby, deplete Wg from neurons, causing neurodegeneration. We have defined this process as "vampirization." Furthermore, GB cells establish a positive feedback loop to promote their expansion, in which the Wg pathway activates cJun N-terminal kinase (JNK) in GB cells, and, in turn, JNK signaling leads to the post-transcriptional up-regulation and accumulation of matrix metalloproteinases (MMPs), which facilitate TMs' infiltration throughout the brain, TMs' network expansion, and further Wg depletion from neurons. Consequently, GB cells proliferate because of the activation of the Wg signaling target, ß-catenin, and neurons degenerate because of Wg signaling extinction. Our findings reveal a molecular mechanism for TM production, infiltration, and maintenance that can explain both neuron-dependent tumor progression and also the neural decay associated with GB.
Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Metaloproteinases da Matriz/metabolismo , Neurônios/metabolismo , Via de Sinalização Wnt/fisiologia , Animais , Animais Geneticamente Modificados , Neoplasias Encefálicas/patologia , Comunicação Celular/fisiologia , Linhagem Celular Tumoral , Progressão da Doença , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Feminino , Receptores Frizzled/metabolismo , Glioblastoma/patologia , Xenoenxertos , Humanos , Masculino , Microtúbulos/metabolismo , Neurônios/patologia , Proteína Wnt1/metabolismoRESUMO
The nervous system integrates and processes information to act as master regulator of various vital, biological processes. However, increasing data suggest that the nervous system is also a key player in the initiation of cancer and cancer progression. Following the tenet that oncology follows ontogeny, it has been shown that brain tumors follow neural developmental processes. Incurable gliomas form neurite-like membrane tubes called tumor microtubes and are controlled by neurodevelopmental pathways. Tumor microtubes are used for invasion, proliferation and interconnection with other tumor cells, forming a tumor network that is therapeutically resistant. Additionally, neurons can activate tumor cells via glutamatergic synapses to drive tumor invasion and growth. The most recent knowledge of brain cancer neuroscience presented here with a focus on brain tumours has already led to new approaches for antitumour treatment.
Assuntos
Neoplasias Encefálicas , Glioma , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Glioma/diagnóstico , Glioma/terapia , Humanos , NeurôniosRESUMO
Astrocytic brain tumours, including glioblastomas, are incurable neoplasms characterized by diffusely infiltrative growth. Here we show that many tumour cells in astrocytomas extend ultra-long membrane protrusions, and use these distinct tumour microtubes as routes for brain invasion, proliferation, and to interconnect over long distances. The resulting network allows multicellular communication through microtube-associated gap junctions. When damage to the network occurred, tumour microtubes were used for repair. Moreover, the microtube-connected astrocytoma cells, but not those remaining unconnected throughout tumour progression, were protected from cell death inflicted by radiotherapy. The neuronal growth-associated protein 43 was important for microtube formation and function, and drove microtube-dependent tumour cell invasion, proliferation, interconnection, and radioresistance. Oligodendroglial brain tumours were deficient in this mechanism. In summary, astrocytomas can develop functional multicellular network structures. Disconnection of astrocytoma cells by targeting their tumour microtubes emerges as a new principle to reduce the treatment resistance of this disease.
Assuntos
Astrocitoma/patologia , Neoplasias Encefálicas/patologia , Junções Comunicantes/metabolismo , Animais , Astrocitoma/metabolismo , Astrocitoma/radioterapia , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/radioterapia , Comunicação Celular/efeitos da radiação , Morte Celular/efeitos da radiação , Proliferação de Células/efeitos da radiação , Extensões da Superfície Celular/metabolismo , Extensões da Superfície Celular/efeitos da radiação , Sobrevivência Celular/efeitos da radiação , Conexina 43/metabolismo , Progressão da Doença , Proteína GAP-43/metabolismo , Junções Comunicantes/efeitos da radiação , Glioma/metabolismo , Glioma/patologia , Glioma/radioterapia , Humanos , Masculino , Camundongos , Camundongos Nus , Invasividade Neoplásica , Tolerância a Radiação/efeitos dos fármacosRESUMO
Super-resolution fluorescence microscopy has become a widely used tool in many areas of research. However, designing and validating super-resolution experiments to address a research question in a technically feasible and scientifically rigorous manner remains a fundamental challenge. We developed SuReSim, a software tool that simulates localization data of arbitrary three-dimensional structures represented by ground truth models, allowing users to systematically explore how changing experimental parameters can affect potential imaging outcomes.
Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia de Fluorescência/métodos , Software , Vesículas Sinápticas/ultraestrutura , Algoritmos , Biologia Computacional , Humanos , Microscopia de Fluorescência/instrumentaçãoRESUMO
Cellular mechanisms mediating immunotherapy resistances are incompletely understood. In this issue, Li et al. reveal how breast cancer hijacks neuronal mechanisms of neuroprotection to shield itself from the immune system. Secretion of N-acetylaspartate impairs immune synapse formation in both neuroinflammation and breast cancer models, paving the way for novel therapeutic approaches.
Assuntos
Neoplasias da Mama , Neurônios , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Feminino , Neurônios/metabolismo , Neurônios/imunologia , Sistema Imunitário/imunologia , AnimaisRESUMO
Gliomas exhibit significant molecular diversity and poor prognosis. In this issue of Cancer Cell, Curry et al. apply Patch-seq on human glioma samples uncovering hybrid cells with glial and neuronal features, capable of firing action potentials in isocitrate dehydrogenase mutant gliomas. These findings highlight the importance of neural features in tumor biology and progression.
Assuntos
Potenciais de Ação , Neoplasias Encefálicas , Glioma , Humanos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Glioma/genética , Glioma/patologia , Mutação , Isocitrato Desidrogenase/genéticaRESUMO
Intravital 2P-microscopy enables the longitudinal study of brain tumor biology in superficial mouse cortex layers. Intravital microscopy of the white matter, an important route of glioblastoma invasion and recurrence, has not been feasible, due to low signal-to-noise ratios and insufficient spatiotemporal resolution. Here, we present an intravital microscopy and artificial intelligence-based analysis workflow (Deep3P) that enables longitudinal deep imaging of glioblastoma up to a depth of 1.2 mm. We find that perivascular invasion is the preferred invasion route into the corpus callosum and uncover two vascular mechanisms of glioblastoma migration in the white matter. Furthermore, we observe morphological changes after white matter infiltration, a potential basis of an imaging biomarker during early glioblastoma colonization. Taken together, Deep3P allows for a non-invasive intravital investigation of brain tumor biology and its tumor microenvironment at subcortical depths explored, opening up opportunities for studying the neuroscience of brain tumors and other model systems.
Assuntos
Neoplasias Encefálicas , Glioblastoma , Microscopia Intravital , Microambiente Tumoral , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Microscopia Intravital/métodos , Camundongos , Humanos , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Linhagem Celular Tumoral , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Invasividade NeoplásicaRESUMO
SUMMARY: The field of cancer neuroscience has begun to define the contributions of nerves to cancer initiation and progression; here, we highlight the future directions of basic and translational cancer neuroscience for malignancies arising outside of the central nervous system.