Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 352
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 26(4): e16626, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38646847

RESUMO

The bacterial genus Hafnia has recently attracted attention due to its complex metabolic features and host-interaction capabilities, which are associated with health benefits, primarily weight loss. However, significant gaps remain in our understanding of the genomic characteristics of this emerging microbial group. In this study, we utilized all available high-quality genomes of Hafnia alvei and Hafnia paralvei to uncover the broad distribution of Hafnia in human and honeybee guts, as well as in dairy products, by analysing 1068 metagenomic datasets. We then investigated the genetic traits related to Hafnia's production of vitamins and short-chain fatty acids (SCFAs) through a comparative genomics analysis that included all dominant bacterial species in the three environments under study. Our findings underscore the extensive metabolic capabilities of Hafnia, particularly in the production of vitamins such as thiamine (B1), nicotinate (B3), pyridoxine (B6), biotin (B7), folate (B9), cobalamin (B12), and menaquinone (K2). Additionally, Hafnia demonstrated a conserved genetic makeup associated with SCFA production, including acetate, propanoate, and butanoate. These metabolic traits were further confirmed using RNAseq analyses of a newly isolated H. paralvei strain T10. Overall, our study illuminates the ecological distribution and genetic attributes of this bacterial genus, which is of increasing scientific and industrial relevance.


Assuntos
Microbioma Gastrointestinal , Microbioma Gastrointestinal/genética , Humanos , Animais , Abelhas/microbiologia , Ácidos Graxos Voláteis/metabolismo , Genoma Bacteriano , Microbiologia de Alimentos , Metagenômica , Vitaminas/metabolismo , Filogenia
2.
Appl Environ Microbiol ; 90(3): e0215223, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38334291

RESUMO

The dairy fermentation industry relies on the activity of lactic acid bacteria in robust starter cultures to accomplish milk acidification. Maintenance of the composition of these starter cultures, whether defined or undefined, is essential to ensure consistent and high-quality fermentation end products. To date, limited information exists regarding the microbial composition of undefined starter culture systems. Here, we describe a culture-based analysis combined with a metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, we describe a qPCR-based genotype detection assay, which is capable of discerning nine distinct lactococcal genotypes to characterize these undefined starter cultures, and which can be applied to monitor compositional changes in an undefined starter culture during a fermentation. IMPORTANCE: This study reports on the development of a combined culture-based analysis and metagenomics approach to evaluate the composition of two undefined mesophilic starter cultures. In addition, a novel qPCR-based genotype detection assay, capable of discerning nine distinct lactococcal genotypes (based on lactococcal cell wall polysaccharide biosynthesis gene clusters), was used to monitor compositional changes in an undefined starter culture following phage attack. These analytical approaches facilitate a multifaceted assessment of starter culture compositional stability during milk fermentation, which has become an important QC aspect due to the increasing demand for consistent and high-quality dairy products.


Assuntos
Bacteriófagos , Lactobacillales , Lactococcus lactis , Animais , Lactococcus lactis/genética , Leite/microbiologia , Bacteriófagos/genética , Fermentação
3.
Appl Environ Microbiol ; 90(2): e0201423, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38294252

RESUMO

Bifidobacteria are among the first microbial colonizers of the human gut, being frequently associated with human health-promoting activities. In the current study, an in silico methodology based on an ecological and phylogenomic-driven approach allowed the selection of a Bifidobacterium adolescentis prototype strain, i.e., B. adolescentis PRL2023, which best represents the overall genetic content and functional features of the B. adolescentis taxon. Such features were confirmed by in vitro experiments aimed at evaluating the ability of this strain to survive in the gastrointestinal tract of the host and its ability to interact with human intestinal cells and other microbial gut commensals. In this context, co-cultivation of B. adolescentis PRL2023 and several gut commensals revealed various microbe-microbe interactions and indicated co-metabolism of particular plant-derived glycans, such as xylan.IMPORTANCEThe use of appropriate bacterial strains in experimental research becomes imperative in order to investigate bacterial behavior while mimicking the natural environment. In the current study, through in silico and in vitro methodologies, we were able to identify the most representative strain of the Bifidobacterium adolescentis species. The ability of this strain, B. adolescentis PRL2023, to cope with the environmental challenges imposed by the gastrointestinal tract, together with its ability to switch its carbohydrate metabolism to compete with other gut microorganisms, makes it an ideal choice as a B. adolescentis prototype and a member of the healthy microbiota of adults. This strain possesses a genetic blueprint appropriate for its exploitation as a candidate for next-generation probiotics.


Assuntos
Bifidobacterium adolescentis , Microbioma Gastrointestinal , Probióticos , Adulto , Humanos , Bifidobacterium adolescentis/genética , Bifidobacterium adolescentis/metabolismo , Microbioma Gastrointestinal/genética , Bifidobacterium/genética , Bifidobacterium/metabolismo , Filogenia
4.
Adv Appl Microbiol ; 126: 93-119, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38637108

RESUMO

The early postnatal period represents a critical window of time for the establishment and maturation of the human gut microbiota. The gut microbiota undergoes dramatic developmental changes during the first year of life, being influenced by a variety of external factors, with diet being a major player. Indeed, the introduction of complementary feeding provides novel nutritive substrates and triggers a shift from milk-adapted gut microbiota toward an adult-like bacterial composition, which is characterized by an enhancement in diversity and proportions of fiber-degrading bacterial genera like Ruminococcus, Prevotella, Eubacterium, and Bacteroides genera. Inadequate gut microbiota development in early life is frequently associated with concomitant and future adverse health conditions. Thus, understanding the processes that govern initial colonization and establishment of microbes in the gastrointestinal tract is of great importance. This review summarizes the actual understanding of the assembly and development of the microbial community associated with the infant gut, emphasizing the importance of mother-to-infant vertical transmission events as a fundamental arrival route for the first colonizers.


Assuntos
Microbioma Gastrointestinal , Microbiota , Lactente , Feminino , Humanos , Trato Gastrointestinal/microbiologia , Mães , Dieta
5.
J Nanobiotechnology ; 22(1): 45, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291460

RESUMO

Amorphous silica nanoparticles (ASNP) are among the nanomaterials that are produced in large quantities. ASNP have been present for a long time in several fast-moving consumer products, several of which imply exposure of the gastrointestinal tract, such as toothpastes, food additives, drug excipients, and carriers. Consolidated use and experimental evidence have consistently pointed to the very low acute toxicity and limited absorption of ASNP. However, slow absorption implies prolonged exposure of the intestinal epithelium to ASNP, with documented effects on intestinal permeability and immune gut homeostasis. These effects could explain the hepatic toxicity observed after oral administration of ASNP in animals. More recently, the role of microbiota in these and other ASNP effects has attracted increasing interest in parallel with the recognition of the role of microbiota in a variety of conditions. Although evidence for nanomaterial effects on microbiota is particularly abundant for materials endowed with bactericidal activities, a growing body of recent experimental data indicates that ASNPs also modify microbiota. The implications of these effects are recounted in this contribution, along with a discussion of the more important open issues and recommendations for future research.


Assuntos
Microbioma Gastrointestinal , Nanopartículas , Animais , Humanos , Dióxido de Silício/toxicidade , Nanopartículas/toxicidade , Mucosa Intestinal
6.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769041

RESUMO

The gut microbiota is involved in the development of the immune system and can modulate the risk for immune-mediated disorders such as multiple sclerosis (MS). Dysbiosis has been demonstrated in MS patients and its restoration by disease-modifying treatments (DMTs) is hypothesized. We aimed to study the changes in gut microbiota composition during the first 6 months of treatment with dimethyl fumarate (DMF), an oral DMT, and to identify the microorganisms associated with DMF side effects. We collected and analyzed the gut microbiota of 19 MS patients at baseline and after 1, 3, and 6 months of DMF treatment. We then cross-sectionally compared gut microbiota composition according to the presence of gastrointestinal (GI) symptoms and flushing. Overall, the gut microbiota biodiversity showed no changes over the 6-month follow-up. At the genus level, DMF was associated with decreased Clostridium abundance after 6 months. In subjects reporting side effects, a higher abundance of Streptococcus, Haemophilus, Clostridium, Lachnospira, Blautia, Subdoligranulum, and Tenericutes and lower of Bacteroidetes, Barnesiella, Odoribacter, Akkermansia, and some Proteobacteria families were detected. Our results suggest that gut microbiota may be involved in therapeutic action and side effects of DMF, representing a potential target for improving disease course and DMT tolerability.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Gastroenteropatias , Microbioma Gastrointestinal , Esclerose Múltipla , Humanos , Fumarato de Dimetilo/efeitos adversos , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/microbiologia , Gastroenteropatias/tratamento farmacológico , Bacteroidetes , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos/tratamento farmacológico , Imunossupressores/uso terapêutico
7.
Environ Microbiol ; 24(12): 5666-5679, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36161453

RESUMO

Bifidobacterium asteroides is considered the ancestor of the genus Bifidobacterium, which has evolved in close touch with the hindgut of social insects. However, recent studies revealed high intraspecies biodiversity within this taxon, uncovering the putative existence of multiple bifidobacterial species, thus, suggesting its reclassification. Here, a genomic investigation of 98 B. asteroides-related genomes retrieved from public repositories and reconstructed from metagenomes of the hindgut of Apis mellifera and Apis cerana was performed to shed light on the genetic variability of this taxon. Phylogenetic and genomic analyses revealed the existence of eight clusters, of which five have been recently characterized with a representative type strain of the genus and three were represented by putative novel bifidobacterial species inhabiting the honeybee gut. Then, the dissection of 366 shotgun metagenomes of honeybee guts revealed a pattern of seven B. asteroides-related taxa within A. mellifera that co-exist with the host, while A. cerana microbiome was characterized by the predominance of one of the novel species erroneously classified as B. asteroides. A further glycobiome analysis unveiled a conserved repertoire of glycosyl hydrolases (GHs) reflecting degradative abilities towards a broad range of simple carbohydrates together with genes encoding specific GHs of each B. asteroides-related taxa.


Assuntos
Bifidobacterium , Microbiota , Abelhas , Animais , Filogenia , Bifidobacterium/genética , Microbiota/genética , Metagenoma
8.
Environ Microbiol ; 24(9): 3912-3923, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35355372

RESUMO

Fresh potable water is an indispensable drink which humans consume daily in substantial amounts. Nonetheless, very little is known about the composition of the microbial community inhabiting drinking water or its impact on our gut microbiota. In the current study, an exhaustive shotgun metagenomics analysis of the tap water microbiome highlighted the occurrence of a highly genetic biodiversity of the microbial communities residing in fresh water and the existence of a conserved core tap water microbiota largely represented by novel microbial species, representing microbial dark matter. Furthermore, genome reconstruction of this microbial dark matter from water samples unveiled homologous sequences present in the faecal microbiome of humans from various geographical locations. Accordingly, investigation of the faecal microbiota content of a subject that daily consumed tap water for 3 years provides proof for horizontal transmission and colonization of water bacteria in the human gut.


Assuntos
Água Potável , Microbioma Gastrointestinal , Microbiota , Bactérias/genética , Humanos , Metagenômica , RNA Ribossômico 16S/genética
9.
Environ Microbiol ; 24(12): 6453-6462, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36086955

RESUMO

Recent pandemic infection caused by SARS-CoV-2 (COVID-19) led the scientific community to investigate the possible causes contributing to the physiopathology of this disease. In this context, analyses of the intestinal microbiota highlighted possible correlation between host-associated bacterial communities and development of the COVID-19. Nevertheless, a detailed investigation of the role of the human microbiota in the severity of the symptoms of this disease is still lacking. This study performed a comprehensive meta-analysis of 323 faecal samples from public and novel Italian data sets based on the shotgun metagenomic approach. In detail, the comparative analyses revealed possible differences in the microbial biodiversity related to the individual health status, highlighting a species richness decrease in COVID-19 patients with a severe prognosis. Moreover, healthy subjects resulted characterized by a higher abundance of protective and health-supporting bacterial species, while patients affected by COVID-19 disease displayed a significant increase of opportunistic pathogen bacteria involved in developing putrefactive dysbiosis. Furthermore, prediction of the microbiome functional capabilities suggested that individuals affected by COVID-19 subsist in an unbalanced metabolism characterized by an overrepresentation of enzymes involved in the protein metabolism at the expense of carbohydrates oriented pathways, which can impact on disease severity and in excessive systemic inflammation.


Assuntos
COVID-19 , Microbioma Gastrointestinal , Humanos , SARS-CoV-2 , Disbiose/microbiologia , Pandemias , Bactérias/genética
10.
Environ Microbiol ; 24(12): 5825-5839, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36123315

RESUMO

The genomic era has resulted in the generation of a massive amount of genetic data concerning the genomic diversity of bacterial taxa. As a result, the microbiological community is increasingly looking for ways to define reference bacterial strains to perform experiments that are representative of the entire bacterial species. Despite this, there is currently no established approach allowing a reliable identification of reference strains based on a comprehensive genomic, ecological, and functional context. In the current study, we developed a comprehensive multi-omics approach that will allow the identification of the optimal reference strains using the Bifidobacterium genus as test case. Strain tracking analysis based on 1664 shotgun metagenomics datasets of healthy infant faecal samples were employed to identify bifidobacterial strains suitable for in silico and in vitro analyses. Subsequently, an ad hoc bioinformatic tool was developed to screen local strain collections for the most suitable species-representative strain alternative. The here presented approach was validated using in vitro trials followed by metagenomics and metatranscriptomics analyses. Altogether, these results demonstrated the validity of the proposed model for reference strain selection, thus allowing improved in silico and in vitro investigations both in terms of cross-laboratory reproducibility and relevance of research findings.


Assuntos
Bifidobacterium , Multiômica , Humanos , Lactente , Bifidobacterium/genética , Reprodutibilidade dos Testes , Fezes/microbiologia , Metagenômica , Bactérias
11.
Appl Environ Microbiol ; 88(23): e0150422, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36350137

RESUMO

The rhamnose-glucose polysaccharide (Rgp) of Streptococcus thermophilus represents a major cell wall component, and the gene cluster responsible for its biosynthesis (termed rgp) has recently been identified. Significant genetic diversity among these loci has previously been reported, with five distinct rgp genotypes identified (designated rgp1 through -5). In the present study, two additional genotypes were identified (designated rgp6 and rgp7) through comparative analysis of the rgp loci of 78 Streptococcus thermophilus genomes. The rgp locus of a given S. thermophilus strain encoded the biosynthetic machinery for a rhamnan-rich backbone and a variable side chain component, the latter being associated with the highly specific interactions with many bacteriophages that infect this species. The chemical structure of the Rgp from three S. thermophilus strains, representing the rgp2, -3, and -4 genotypes, was elucidated, and based on bioinformatic and biochemical analyses we propose a model for Rgp biosynthesis in dairy streptococci. Furthermore, we exploited the genetic diversity within the S. thermophilus bipartite rgp locus to develop a two-step multiplex PCR system to classify strains based on gene content associated with the biosynthesis of the variable side chain structure as well as the rhamnan backbone. IMPORTANCE Streptococcus thermophilus is present and applied in industrial and artisanal dairy fermentations for the production of various cheeses and yogurt. During these fermentations, S. thermophilus is vulnerable to phage predation, and recent studies have identified the rhamnose-glucose polymer (Rgp) as the definitive receptor for at least one problematic phage species. Detailed analysis of S. thermophilus rgp loci has revealed an unprecedented level of genetic diversity, particularly within the glycosyltransferase-encoding gene content of a given locus. Our study shows that this genetic diversity reflects the biochemical structure(s) of S. thermophilus Rgp. As such, we harnessed the genetic diversity of S. thermophilus rgp loci to develop a two-step multiplex PCR method for the classification of strain collections and, ultimately, the formation of phage-robust rational starter sets.


Assuntos
Ramnose , Streptococcus thermophilus , Streptococcus thermophilus/genética , Parede Celular , Polissacarídeos , Iogurte
12.
Appl Environ Microbiol ; 88(1): e0172321, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34669424

RESUMO

Four bacteriophage-insensitive mutants (BIMs) of the dairy starter bacterium Streptococcus thermophilus UCCSt50 were isolated following challenge with Brussowvirus SW13. The BIMs displayed an altered sedimentation phenotype. Whole-genome sequencing and comparative genomic analysis of the BIMs uncovered mutations within a family 2 glycosyltransferase-encoding gene (orf06955UCCSt50) located within the variable region of the cell wall-associated rhamnose-glucose polymer (Rgp) biosynthesis locus (designated the rgp gene cluster here). Complementation of a representative BIM, S. thermophilus B1, with native orf06955UCCSt50 restored phage sensitivity comparable to that of the parent strain. Detailed bioinformatic analysis of the gene product of orf06955UCCSt50 identified it as a functional homolog of the Lactococcus lactis polysaccharide pellicle (PSP) initiator WpsA. Biochemical analysis of cell wall fractions of strains UCCSt50 and B1 determined that mutations within orf06955UCCSt50 result in the loss of the side chain decoration from the Rgp backbone structure. Furthermore, it was demonstrated that the intact Rgp structure incorporating the side chain structure is essential for phage binding through fluorescence labeling studies. Overall, this study confirms that the rgp gene cluster of S. thermophilus encodes the biosynthetic machinery for a cell surface-associated polysaccharide that is essential for binding and subsequent infection by Brussowviruses, thus enhancing our understanding of S. thermophilus phage-host dynamics. IMPORTANCE Streptococcus thermophilus is an important starter culture bacterium in global dairy fermentation processes, where it is used for the production of various cheeses and yogurt. Bacteriophage predation of the species can result in substandard product quality and, in rare cases, complete fermentation collapse. To mitigate these risks, it is necessary to understand the phage-host interaction process, which commences with the recognition of, and adsorption to, specific host-encoded cell surface receptors by bacteriophage(s). As new groups of S. thermophilus phages are being discovered, the importance of underpinning the genomic elements that specify the surface receptor(s) is apparent. Our research identifies a single gene that is critical for the biosynthesis of a saccharidic moiety required for phage adsorption to its S. thermophilus host. The acquired knowledge provides novel insights into phage-host interactions for this economically important starter species.


Assuntos
Bacteriófagos , Siphoviridae , Fagos de Streptococcus , Bacteriófagos/genética , Polissacarídeos , Fagos de Streptococcus/genética , Streptococcus thermophilus/genética
13.
Appl Environ Microbiol ; 88(12): e0052222, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35652662

RESUMO

Amoxicillin-clavulanic acid (AMC) is the most widely used antibiotic, being frequently prescribed to infants. Particular members of the genus Bifidobacterium are among the first microbial colonizers of the infant gut, and it has been demonstrated that they exhibit various activities beneficial for their human host, including promotion/maintenance of the human gut microbiota homeostasis. It has been shown that natural resistance of bifidobacteria to AMC is limited to a small number of strains. In the current study, we investigated the mitigation effects of AMC-resistant bifidobacteria in diversity preservation of the gut microbiota during AMC treatment. To this end, an in vitro coculture experiment based on infant fecal samples and an in vivo study employing a rodent model were performed. The results confirmed the ability of AMC-resistant bifidobacterial strains to bolster gut microbiota resilience, while specific covariance analysis revealed strain-specific and variable impacts on the microbiota composition by individual bifidobacterial taxa. IMPORTANCE The first microbial colonizers of the infant gut are members of the genus Bifidobacterium, which exhibit different activities beneficial to their host. Amoxicillin-clavulanic acid (AMC) is the most frequently prescribed antibiotic during infancy, and few strains of bifidobacteria are known to show a natural resistance to this antibiotic. In the present work, we evaluated the possible positive effects of AMC-resistant bifidobacterial strains in maintaining gut microbiota diversity during AMC exposure, performing an in vitro and in vivo experiment based on an infant gut model and a rodent model, respectively. Our results suggested the ability of AMC-resistant bifidobacterial strains to support gut microbiota restoration.


Assuntos
Bifidobacterium , Microbioma Gastrointestinal , Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Fezes/microbiologia , Humanos , Lactente
14.
Appl Environ Microbiol ; 88(7): e0203821, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35285708

RESUMO

In recent decades, much scientific attention has been paid to characterizing members of the genus Bifidobacterium due to their well-accepted ability to exert various beneficial effects upon their host. However, despite the well-accepted status of dogs and cats as principal companion animals of humans, the bifidobacterial communities that colonize their gut still represents a rather unexplored research area. To expand and further investigate the bifidobacterial ecosystem inhabiting the canine and feline intestine, strains belonging to this genus were isolated from fecal samples of dogs and cats and subjected to de novo sequencing. The obtained sequencing data, together with publicly available genomes of strains belonging to the same bifidobacterial species of our isolates, and of both human and animal origin, were employed for in-depth comparative genome analyses. These phylogenomic investigations highlighted a different degree of genetic variability between human- or pet-derived bifidobacteria depending on the considered species, with B. pseudocatenulatum strains of pet origin showing higher genetic variability than human-derived strains of the same bifidobacterial species. Furthermore, in silico evaluation of metabolic activities coupled with in vitro growth assays revealed the crucial role of diet in driving the genetic assembly of bifidobacteria as a result of their adaptation to the specific ecological niche they colonize. IMPORTANCE Despite cats and dogs being well recognized as the most intimate companion animals to humans, current knowledge on canine and feline gut microbial consortia is still far from being fully dissected compared to the significant advances achieved for other microbial ecosystems, such as the human gut microbiota. In this context, a combination of in silico genome-based analysis and in vitro carbohydrate growth assay allowed us to further explore the canine and feline bifidobacterial community with respect to that inhabiting the human intestine. Specifically, these data revealed how strains of different bifidobacterial species seem to have evolved a different degree of host-specific adaptation. In detail, genotypic and phenotypic evidence of how diet can be considered the main factor of this host-specific adaptation is provided.


Assuntos
Doenças do Gato , Doenças do Cão , Animais , Bifidobacterium/metabolismo , Gatos , Cães , Ecossistema , Genômica , Humanos
15.
Int J Equity Health ; 21(1): 96, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35836221

RESUMO

BACKGROUND: Research has generally found a significant inverse relationship in mortality risk across socioeconomic (SE) groups. This paper focuses on Spain, a country for which there continues to be very little evidence available concerning retirement pensioners. We draw on the Continuous Sample of Working Lives (CSWL) to investigate disparities in SE mortality among retired men aged 65 and above over the longest possible period covered by this data source: 2005-2018. We use the initial pension income (PI) level as our single indicator of the SE status of the retired population. METHODS: The mortality gradient by income is quantified in two ways: via an indicator referred to as "relative mortality", and by estimating changes in total life expectancy (LE) by PI level at ages 65 and 75 over time. We show that, should the information provided by the relative mortality ratio not be completely clear, a second indicator needs to be introduced to give a broad picture of the true extent of inequality in mortality. RESULTS: The first indicator reveals that, for the period covered and for all age groups, the differences in death rates across PI levels widens over time. At older age groups, these differences across PI levels diminish. The second indicator shows that disparities in LE at ages 65 and 75 between pensioners in the lowest and highest income groups are relatively small, although slightly higher than previously reported for Spain. This gap in LE widens over time, from 1.49 to 2.54 years and from 0.71 to 1.40 years respectively for pensioners aged 65 and 75. These differences are statistically significant. CONCLUSIONS: Along with other behavioral and structural aspects, a combination of factors such as the design of the pension system, the universality and quality of the health system, and high levels of family support could explain why LE inequalities for retired Spanish men are relatively small. To establish the reasons for this increased inequality in LE, more research needs to be carried out. An analysis of all Spanish social security records instead of just a sample would provide us with more information.


Assuntos
Expectativa de Vida , Aposentadoria , Idoso , Disparidades nos Níveis de Saúde , Humanos , Renda , Masculino , Mortalidade , Pensões , Fatores Socioeconômicos , Espanha/epidemiologia
16.
Math Soc Sci ; 119: 97-107, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35937185

RESUMO

We introduce a dynamical system to model the complex interaction between COVID-19 and economic activity. The model introduces some novelties not accounted by SIR-like models. The equilibrium of the system is an unstable focus, with fluctuations having increasing size and periodicity. Numerical simulations of the model produce waves which reproduce the pandemic dynamics. In observing the stylized facts linking economics and pandemic and stating related reasonable assumptions, we obtain a Lotka-Volterra co-dynamics. This outcome is confirmed by extensive simulations. The outcomes obtained qualitatively replicate some important stylized facts deepening the knowledge about the role of some parameters in their origin and eventually in their shaping.

17.
Environ Microbiol ; 23(3): 1780-1792, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615652

RESUMO

The human vaginal environment harbours a community of bacteria that plays an important role in maintaining vaginal health and in protecting this environment from various urogenital infections. This bacterial population, also known as vaginal microbiota, has been demonstrated to be dominated by members of the Lactobacillus genus. Several studies employing 16S rRNA gene-based amplicon sequencing have classified the vaginal microbiota into five distinct community state types (CSTs) or vaginotypes. To deepen our understanding of the vaginal microbiota we performed an in-depth meta-analysis of 1312 publicly available datasets concerning healthy vaginal microbiome information obtained by metagenomics sequencing. The analysis confirmed the predominance of taxa belonging to the Lactobacillus genus, followed by members of the genera Gardnerella, Vibrio and Atopobium. Moreover, the statistical robustness offered by this meta-analysis allowed us to disentangle the species-level composition of dominant and accessory taxa constituting each vaginotype and to revisit and refine the previously proposed CST classification. In addition, a functional characterization of the metagenomic datasets revealed particular genetic features associated with each assigned vaginotype.


Assuntos
Microbiota , Feminino , Humanos , Lactobacillus/genética , Metagenômica , Microbiota/genética , RNA Ribossômico 16S/genética , Vagina
18.
Environ Microbiol ; 23(6): 3294-3305, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33973321

RESUMO

Whole metagenomic shotgun (WMS) sequencing has dramatically enhanced our ability to study microbial genomics. The possibility to unveil the genetic makeup of bacteria that cannot be easily isolated has significantly expanded our microbiological horizon. Here, we report an approach aimed at uncovering novel bacterial species by the use of targeted WMS sequencing. Employing in silico data retrieved from metabolic modelling to formulate a chemically defined medium (CDM), we were able to isolate and subsequently sequence the genomes of six putative novel species of bacteria from the gut of non-human primates.


Assuntos
Microbioma Gastrointestinal , Animais , Bactérias/genética , Microbioma Gastrointestinal/genética , Genoma Bacteriano/genética , Metagenoma , Metagenômica
19.
Appl Environ Microbiol ; 87(8)2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33579685

RESUMO

Vaginal microbiota is defined as the community of bacteria residing in the human vaginal tract. Recent studies have demonstrated that the vaginal microbiota is dominated by members of the Lactobacillus genus, whose relative abundance and microbial taxa composition are dependent on the healthy status of this human body site. Particularly, among members of this genus, the high prevalence of Lactobacillus crispatus is commonly associated with a healthy vaginal environment. In the current study, we assessed the microbial composition of 94 healthy vaginal microbiome samples through shotgun metagenomics analyses. Based on our results we observed that L. crispatus was the most representative species and correlated negatively with bacteria involved in vaginal infections. Therefore, we isolated fifteen L. crispatus strains from different environments in which this species is abounding, ranging from vaginal swabs of healthy women to chicken fecal samples. The genomes of these strains were decoded and their genetic content was analyzed and correlated with their physiological features. An extensive comparative genomic analysis encompassing all publicly available genome sequences of L. crispatus and combined with those decoded in this study, revealed a genetic adaptation of strains to their ecological niche. In addition, in vitro growth experiments involving all isolated L. crispatus strains together with a synthetic vaginal microbiota reveal how this species is able to modulate the composition of the vaginal microbial consortia at strain level. Overall, our findings suggest that L. crispatus plays an important ecological role in reducing the complexity of the vaginal microbiota by depleting pathogenic bacteria.Importance The vaginal microbiota is defined as the community of bacteria residing in the human vaginal tract. Recent studies have demonstrated that the high prevalence of Lactobacillus crispatus species is commonly associated with a healthy vaginal environment. In the current study, we assessed the microbial composition of 94 public healthy vaginal samples through shotgun metagenomics analyses. Results showed that L. crispatus was the most representative species and correlated negatively with bacteria involved in vaginal infections. Moreover, we isolated and sequenced the genome of new L. crispatus strains from different environments and the comparative genomics analysis revealed a genetic adaptation of strains to their ecological niche. In addition, in-vitro growth experiments display the capability of this species to modulate the composition of the vaginal microbial consortia. Overall, our findings suggest an ecological role exploited by L. crispatus in reducing the complexity of the vaginal microbiota toward a depletion of pathogenic bacteria.

20.
Appl Environ Microbiol ; 87(7)2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33483308

RESUMO

Amoxicillin-clavulanic acid (AMC) is one of the most frequently prescribed antibiotic formulations in the Western world. Extensive oral use of this antimicrobial combination influences the gut microbiota. One of the most abundant early colonizers of the human gut microbiota is represented by different taxa of the Bifidobacterium genus, which include many members that are considered to bestow beneficial effects upon their host. In the current study, we investigated the impact of AMC administration on the gut microbiota composition, comparing the gut microbiota of 23 children that had undergone AMC antibiotic therapy to that of 19 children that had not been treated with antibiotics during the preceding 6 months. Moreover, we evaluated AMC sensitivity by MIC test of 261 bifidobacterial strains, including reference strains for the currently recognized 64 bifidobacterial (sub)species, as well as 197 bifidobacterial isolates of human origin. These assessments allowed the identification of four bifidobacterial strains that exhibit a high level of AMC insensitivity, which were subjected to genomic and transcriptomic analyses to identify the putative genetic determinants responsible for this AMC insensitivity. Furthermore, we investigated the ecological role of AMC-resistant bifidobacterial strains by in vitro batch cultures.IMPORTANCE Based on our results, we observed a drastic reduction in gut microbiota diversity of children treated with antibiotics, which also affected the abundance of Bifidobacterium, a bacterial genus commonly found in the infant gut. MIC experiments revealed that more than 98% of bifidobacterial strains tested were shown to be inhibited by the AMC antibiotic. Isolation of four insensitive strains and sequencing of their genomes revealed the identity of possible genes involved in AMC resistance mechanisms. Moreover, gut-simulating in vitro experiments revealed that one strain, i.e., Bifidobacterium breve PRL2020, is able to persist in the presence of a complex microbiota combined with AMC antibiotic.


Assuntos
Combinação Amoxicilina e Clavulanato de Potássio/farmacologia , Antibacterianos/farmacologia , Bifidobacterium/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Bifidobacterium/genética , Criança , Pré-Escolar , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Lactente
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa