Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Radiology ; 313(1): e240237, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39377678

RESUMO

Background Mammographic background characteristics may stimulate human visual adaptation, allowing radiologists to detect abnormalities more effectively. However, it is unclear whether density, or another image characteristic, drives visual adaptation. Purpose To investigate whether screening performance improves when screening mammography examinations are ordered for batch reading according to mammographic characteristics that may promote visual adaptation. Materials and Methods This retrospective multireader multicase study was performed with mammograms obtained between September 2016 and May 2019. The screening examinations, each consisting of four mammograms, were interpreted by 13 radiologists in three distinct orders: randomly, by increasing volumetric breast density (VBD), and based on a self-supervised learning (SSL) encoding (examinations automatically grouped as "looking similar"). An eye tracker recorded radiologists' eye movements during interpretation. The area under the receiver operating characteristic curve (AUC), sensitivity, and specificity of random-ordered readings were compared with those of VBD- and SSL-ordered readings using mixed-model analysis of variance. Reading time, fixation metrics, and perceived density were compared using Wilcoxon signed-rank tests. Results Mammography examinations (75 with breast cancer, 75 without breast cancer) from 150 women (median age, 55 years [IQR, 50-63]) were read. The examinations ordered by increasing VBD versus randomly had an increased AUC (0.93 [95% CI: 0.91, 0.96] vs 0.92 [95% CI: 0.89, 0.95]; P = .009), without evidence of a difference in specificity (89% [871 of 975] vs 86% [837 of 975], P = .04) and sensitivity (both 81% [794 of 975 vs 788 of 975], P = .78), and a reduced reading time (24.3 vs 27.9 seconds, P < .001), fixation count (47 vs 52, P < .001), and fixation time in malignant regions (3.7 vs 4.6 seconds, P < .001). For SSL-ordered readings, there was no evidence of differences in AUC (0.92 [95% CI: 0.89, 0.95]; P = .70), specificity (84% [820 of 975], P = .37), sensitivity (80% [784 of 975], P = .79), fixation count (54, P = .05), or fixation time in malignant regions (4.6 seconds, P > .99) compared with random-ordered readings. Reading times were significantly higher for SSL-ordered readings compared with random-ordered readings (28.4 seconds, P = .02). Conclusion Screening mammography examinations ordered from low to high VBD improved screening performance while reducing reading and fixation times. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Grimm in this issue.


Assuntos
Neoplasias da Mama , Mamografia , Humanos , Feminino , Mamografia/métodos , Pessoa de Meia-Idade , Estudos Retrospectivos , Neoplasias da Mama/diagnóstico por imagem , Radiologistas , Sensibilidade e Especificidade , Competência Clínica , Detecção Precoce de Câncer/métodos , Densidade da Mama/fisiologia
2.
J Med Imaging (Bellingham) ; 11(1): 014001, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38162417

RESUMO

Purpose: We developed a segmentation method suited for both raw (for processing) and processed (for presentation) digital mammograms (DMs) that is designed to generalize across images acquired with systems from different vendors and across the two standard screening views. Approach: A U-Net was trained to segment mammograms into background, breast, and pectoral muscle. Eight different datasets, including two previously published public sets and six sets of DMs from as many different vendors, were used, totaling 322 screen film mammograms (SFMs) and 4251 DMs (2821 raw/processed pairs and 1430 only processed) from 1077 different women. Three experiments were done: first training on all SFM and processed images, second also including all raw images in training, and finally testing vendor generalization by leaving one dataset out at a time. Results: The model trained on SFM and processed mammograms achieved a good overall performance regardless of projection and vendor, with a mean (±std. dev.) dice score of 0.96±0.06 for all datasets combined. When raw images were included in training, the mean (±std. dev.) dice score for the raw images was 0.95±0.05 and for the processed images was 0.96±0.04. Testing on a dataset with processed DMs from a vendor that was excluded from training resulted in a difference in mean dice varying between -0.23 to +0.02 from that of the fully trained model. Conclusions: The proposed segmentation method yields accurate overall segmentation results for both raw and processed mammograms independent of view and vendor. The code and model weights are made available.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa