Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Chemistry ; 29(67): e202302304, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37665636

RESUMO

Covalent Organic Frameworks (COFs) are crystalline, porous organic materials. Recent studies have demonstrated novel processing strategies for COFs to form adaptable architectures, but these have focused primarily on imine-linked COFs. This work presents a new synthesis and processing route to produce crystalline hydrazone-linked COF gels and aerogels with hierarchical porosity. The method was implemented to produce a series of hydrazone-linked COFs with different alkyl side-chain substituents, achieving control of the hydrophilicity of the final aerogel. Variation in the length of the alkyl substituents yielded materials with controllable form factors that can preferentially adsorb water or nonpolar organic solvents. Additionally, a method for additive manufacturing of hydrazone-linked COFs using hydroxymethylcellulose as a sacrificial additive is presented. This work demonstrates an effective and simple approach to the fabrication of hydrazone COF aerogels and additive manufacturing to produce hydrazone COFs of desired shape.

2.
Langmuir ; 39(20): 7201-7211, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37172215

RESUMO

We developed "reactive" bottlebrush polymers based on styrene (S) and t-butyl acrylate (tBA) as additives for polystyrene (PS) coatings. The bottlebrush polymers spontaneously bloom to both the air and substrate interfaces during solution casting. While neat PS films are hydrophobic and poorly adhere to the native oxide on clean silicon wafers, the hydrophilicity and substrate adherence of bottlebrush-incorporating PS films can be tailored through the thermally activated deprotection of tBA to produce acrylic acid (AA) and acrylic anhydride (AH). A critical design parameter is the manner by which tBA is incorporated into the bottlebrush: When the bottlebrush side chains are copolymers of S and tBA, the extent of deprotection is extremely low, even after prolonged thermal annealing at elevated temperature. However, when the bottlebrush contains a mixture of poly(t-butyl acrylate) (PtBA) and PS side chains, nearly all tBA is converted to AA and AH. Consequently, using the "mixed-chain" bottlebrush design with thermal processing and appropriate conditioning, the water contact angle is reduced from over 90° on unmodified PS down to 75° on bottlebrush-incorporating PS films, and the substrate adherence is improved in proportion to the extent of tBA deprotection.

3.
Environ Sci Technol ; 57(15): 6331-6341, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37023347

RESUMO

Separation of specific ions from water could enable recovery and reuse of essential metals and nutrients, but established membrane technologies lack the high-precision selectivity needed to facilitate a circular resource economy. In this work, we investigate whether the cation/cation selectivity of a composite cation-exchange membrane (CEM), or a thin polymer selective layer on top of a CEM, may be limited by the mass transfer resistance of the underlying CEM. In our analysis, we utilize a layer-by-layer technique to modify CEMs with a thin polymer selective layer (∼50 nm) that has previously shown high selectivity toward copper over similarly sized metals. While these composite membranes have a CuCl2/MgCl2 selectivity up to 33 times larger than unmodified CEMs in diffusion dialysis, our estimates suggest that eliminating resistance from the underlying CEM could further increase selectivity twofold. In contrast, the CEM base layer has a smaller effect on the selectivity of these composite membranes in electrodialysis, although these effects could become more pronounced for ultrathin or highly conductive selective layers. Our results highlight that base layer resistance prevents selectivity factors from being comparable across diffusion dialysis and electrodialysis, and CEMs with low resistance are necessary for providing highly precise separations with composite CEMs.


Assuntos
Polímeros , Água , Cobre , Cátions
4.
J Am Chem Soc ; 144(13): 5728-5733, 2022 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-35319193

RESUMO

The connectivity of building units for 3D covalent organic frameworks (COFs) has long been primarily 4 and 6, which have severely curtailed the structural diversity of 3D COFs. Here we demonstrate the successful design and synthesis of a porphyrin based, 8-connected building block with cubic configuration, which could be further reticulated into an unprecedented interpenetrated pcb topology by imine condensation with linear amine monomers. This study presents the first case of high-connectivity building units bearing 8-connected cubic nodes, thus greatly enriching the topological possibilities of 3D COFs.

5.
Soft Matter ; 18(27): 5074-5081, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35764591

RESUMO

Liquid crystal elastomers are stimuli-responsive, shape-shifting materials. They typically require high temperatures for actuation which prohibits their use in many applications, such as biomedical devices. In this work, we demonstrate a simple and general approach to tune the order-to-disorder transition temperature (TODT) or nematic-to-isotropic transition temperature (TNI) of LCEs through variation of the overall liquid crystal mass content. We demonstrate reduction of the TNI in nematic LCEs through the incorporation of non-mesogenic linkers or the addition of lithium salts, and show that the TNI varies linearly with liquid crystal mass content over a broad range, approximately 50 °C. We also analyze data from prior reports that include three different mesogens, different network linking chemistries, and different alignment strategies, and show that the linear trend in TODT with liquid crystal mass content also holds for these systems. Finally, we demonstrate a simple approach to quantifying the maximum actuation strain through measurement of the soft elastic plateau and demonstrate applications of nematic LCEs with low TODTs, including the first body-responsive LCE that curls around a human finger due to body heat, and a fluidic channel that directionally pumps liquid when heated.

6.
Nature ; 536(7616): 312-6, 2016 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-27383783

RESUMO

Three-dimensional organic-inorganic perovskites have emerged as one of the most promising thin-film solar cell materials owing to their remarkable photophysical properties, which have led to power conversion efficiencies exceeding 20 per cent, with the prospect of further improvements towards the Shockley-Queisser limit for a single­junction solar cell (33.5 per cent). Besides efficiency, another critical factor for photovoltaics and other optoelectronic applications is environmental stability and photostability under operating conditions. In contrast to their three-dimensional counterparts, Ruddlesden-Popper phases--layered two-dimensional perovskite films--have shown promising stability, but poor efficiency at only 4.73 per cent. This relatively poor efficiency is attributed to the inhibition of out-of-plane charge transport by the organic cations, which act like insulating spacing layers between the conducting inorganic slabs. Here we overcome this issue in layered perovskites by producing thin films of near-single-crystalline quality, in which the crystallographic planes of the inorganic perovskite component have a strongly preferential out-of-plane alignment with respect to the contacts in planar solar cells to facilitate efficient charge transport. We report a photovoltaic efficiency of 12.52 per cent with no hysteresis, and the devices exhibit greatly improved stability in comparison to their three-dimensional counterparts when subjected to light, humidity and heat stress tests. Unencapsulated two-dimensional perovskite devices retain over 60 per cent of their efficiency for over 2,250 hours under constant, standard (AM1.5G) illumination, and exhibit greater tolerance to 65 per cent relative humidity than do three-dimensional equivalents. When the devices are encapsulated, the layered devices do not show any degradation under constant AM1.5G illumination or humidity. We anticipate that these results will lead to the growth of single-crystalline, solution-processed, layered, hybrid, perovskite thin films, which are essential for high-performance opto-electronic devices with technologically relevant long-term stability.

7.
J Sep Sci ; 45(23): 4318-4326, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36168868

RESUMO

Molecular imprinting is a promising strategy to selectively adsorb viruses, but it requires discerning and validating epitopes that serve as effective imprinting templates. In this work, glycoprotein-imprinted particles were synthesized for coronavirus capture. Adsorption was maximized at pH 6 (the glycoprotein isoelectric point) where the glycoprotein-imprinted particles outperformed non-imprinted particles, adsorbing 4.96 × 106  ± 3.33 × 103 versus 3.54 × 106  ± 1.39 × 106 median tissue culture infectious dose/mg of the target coronavirus, human coronavirus - organ culture 43, within the first 30 min (p = 0.012). During competitive adsorption, with pH adjustment (pH 6), the glycoprotein-imprinted particles adsorbed more target virus than non-target coronavirus (human coronavirus - Netherland 63) with 2.34 versus 1.94 log removal in 90 min (p < 0.01). In contrast, the non-imprinted particles showed no significant difference in target versus non-target virus removal. Electrostatic potential calculation shows that the human coronavirus - organ culture 43 glycoprotein has positively charged pockets at pH 6, which may facilitate adsorption at lower pH values. Therefore, tuning the target virus glycoprotein charge via pH adjustment enhanced adsorption by minimizing repulsive electrostatic interactions with the particles. Overall, these results highlight the effective use of glycoprotein-imprinted particles for coronavirus capture and discern the merits and limitations of glycoprotein imprinting for the capture of enveloped viruses.


Assuntos
Coronavirus , Humanos , Glicoproteínas
8.
Soft Matter ; 17(40): 9028-9039, 2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34523659

RESUMO

Bottlebrush polymers are complex macromolecules with tunable physical properties dependent on the chemistry and architecture of both the side chains and the backbone. Prior work has demonstrated that bottlebrush polymer additives can be used to control the interfacial properties of blends with linear polymers but has not specifically addressed the effects of bottlebrush side chain microstructures. Here, using a combination of experiments and self-consistent field theory (SCFT) simulations, we investigated the effects of side chain microstructures by comparing the segregation of bottlebrush additives having random copolymer side chains with bottlebrush additives having a mixture of two different homopolymer side chain chemistries. Specifically, we synthesized bottlebrush polymers with either poly(styrene-ran-methyl methacrylate) side chains or with a mixture of polystyrene (PS) and poly(methyl methacrylate) (PMMA) side chains. The bottlebrush additives were matched in terms of PS and PMMA compositions, and they were blended with linear PS or PMMA chains that ranged in length from shorter to longer than the bottlebrush side chains. Experiments revealed similar behaviors of the two types of bottlebrushes, with a slight preference for mixed side-chain bottlebrushes at the film surface. SCFT simulations were qualitatively consistent with experimental observations, predicting only slight differences in the segregation of bottlebrush additives driven by side chain microstructures. Specifically, these slight differences were driven by the chemistries of the bottlebrush polymer joints and side chain end-groups, which were entropically repelled and attracted to interfaces, respectively. Using SCFT, we also demonstrated that the interfacial behaviors were dominated by entropic effects with high molecular weight linear polymers, leading to enrichment of bottlebrush near interfaces. Surprisingly, the SCFT simulations showed that the chemistry of the joints connecting the bottlebrush backbones and side chains played a more significant role compared with the side chain end groups in affecting differences in surface excess of bottlebrushes with random and mixed side chains. This work provides new insights into the effects of side chain microstructure on segregation of bottlebrush polymer additives.

9.
Environ Sci Technol ; 54(20): 13322-13332, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32966059

RESUMO

Hexavalent chromium Cr(VI) is a highly toxic groundwater contaminant. In this study, we demonstrate a selective electrochemical process tailored for removal of Cr(VI) using a hybrid MOF@rGO nanomaterial synthesized by in situ growth of a nanocrystalline, mixed ligand octahedral metal-organic framework with cobalt metal centers, [Co2(btec)(bipy)(DMF)2]n (Co-MOF), on the surface of reduced graphene oxide (rGO). The rGO provides the electric conductivity necessary for an electrode, while the Co-MOF endows highly selective adsorption sites for CrO42-. When used as an anode in the treatment cycles, the MOF@rGO electrode exhibits strong selectivity for adsorption of CrO42- over competing anions including Cl-, SO42-, and As(III) and achieves charge efficiency (CE) >100% due to the strong physisorption of CrO42- by Co-MOF; both electro- and physisorption capacities are regenerated with the reversal of the applied voltage, when highly toxic Cr(VI) is reduced to less toxic reduced Cr species and subsequently released into brine. This approach allows easy regeneration of the nonconducting Co-MOF without any chemical addition while simultaneously transforming Cr(VI), inspiring a novel electrochemical method for highly selective degradation of toxic contaminants using tailor-designed electrodes with high affinity adsorbents.


Assuntos
Estruturas Metalorgânicas , Nanoestruturas , Poluentes Químicos da Água , Cromatos , Cromo , Grafite , Água
10.
Soft Matter ; 15(5): 870-879, 2019 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-30628627

RESUMO

Liquid crystal elastomers (LCEs) are shape morphing materials promising for many applications including soft robotics, actuators, and biomedical devices, but current LCE synthesis techniques lack a simple method to program new and arbitrary shape changes. Here, we demonstrate a straightforward method to directly program complex, reversible, non-planar shape changes in nematic LCEs. We utilize a double network synthesis process that results in a competitive double network LCE. By optimizing the crosslink densities of the first and second network we can mechanically program non-planar shapes with strains between 4-100%. This enables us to directly program LCEs using mechanical deformations that impart low or high strains in the LCE including stamping, curling, stretching and embossing methods. The resulting LCEs reversibly shape-shift between the initial and programmed shape. This work widens the potential application of LCEs in biomedical devices, soft-robotics and micro-fluidics where arbitrary and easily programmed shapes are needed.

11.
Langmuir ; 34(22): 6522-6528, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29750537

RESUMO

Heavy crude oil has poor solubility and a high density, making recovery and transport much more difficult and expensive than for light crude oil. Emulsifiers can be used to produce low viscosity oil-in-water emulsions for recovery and transport, but subsequent demulsification can be challenging. Here, we develop and implement interfacially active, pH-responsive polymer-coated nanoparticles (PNPs) to reversibly stabilize, recover, and break oil/water emulsions through variation of solution pH. Silica particles with poly(2-(dimethylamino)ethyl methacrylate) (DMAEMA) chains covalently grafted to the surface are prepared although a reversible addition fragmentation chain transfer grafting-through technique. The resulting DMAEMA PNPs can stabilize emulsions of high viscosity Canadian heavy oil at PNP concentrations as low as 0.1 wt % and at neutral pH. The performance of the DMAEMA PNPs exceeds that of DMAEMA homopolymer additives, which we attribute to the larger size and irreversible adsorption of DMAEMA PNPs to the oil/water interface. After recovery, the emulsion can be destabilized by the addition of acid to reduce pH, resulting in separation and settling of the heavy oil from the aqueous phase. Recovery of more than 10 wt % of the crude heavy oil-in-place is achieved by flooding with aqueous solution of 0.1 wt % DMAEMA PNPs without any additional surfactant or chemical. This work demonstrates the applicability of PNPs as surface active materials for enhanced oil recovery processes and for heavy oil transport.

12.
Soft Matter ; 14(32): 6728-6736, 2018 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30062351

RESUMO

The swelling responses of thin polymer networks were examined as a function of primary polymer architecture. Thin films of linear or bottlebrush polystyrene were cast on polystyrene-grafted substrates, and surface-attached networks were prepared with a radiation crosslinking reaction. The dry and equilibrated swollen thicknesses were both determined with spectroscopic ellipsometry. The dry thickness, which reflects the insoluble fraction of the film after crosslinking, depends on the primary polymer size and radiation dose but is largely independent of primary polymer architecture. When networks are synthesized with a high radiation dose, producing a high density of crosslinks, the extent of swelling is similar for all primary polymer architectures and molecular weights. However, when networks are synthesized with a low radiation dose, the extent of swelling is reduced as the primary polymer becomes larger or increasingly branched. These trends are consistent with a simple Flory model for equilibrium swelling that describes the effects of branch junctions and radiation crosslinks on network elasticity.

13.
Environ Sci Technol ; 52(16): 9486-9494, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30041515

RESUMO

Capacitive deionization (CDI) can remove ionic contaminants from water. However, concentrations of background ions in water are usually much higher than target contaminants, and existing CDI electrodes have no designed selectivity toward specific contaminants. In this study, we demonstrate a selective CDI process tailored for removal of SO42- using activated carbon electrodes modified with a thin, quaternary amine functionalized poly(vinyl alcohol) (QPVA) coating containing submicron sized sulfate selective ion exchange resin particles. The resin/QPVA coating exhibited strong selectivity for SO42- at Cl-: SO42- concentration ratios up to 20:1 by enabling preferential transport of SO42- through the coating, but had no negative impact on the electrosorption kinetics when the coating thickness was small. The cationic nature of the coating also significantly improved the charge efficiency and consequently the total salt adsorption capacity of the electrode by 42%. The resin/QPVA coated CDI system was stable, showing highly reproducible performance in more than 50 adsorption and desorption cycles. This work suggests that addition of selective ion exchange resins on the surface of a carbon electrode could be a generally applicable approach to achieve selective removal of target ions in a CDI process.


Assuntos
Purificação da Água , Adsorção , Carvão Vegetal , Eletrodos , Sulfatos
14.
Environ Sci Technol ; 52(10): 5859-5867, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29659269

RESUMO

Membrane capacitive deionization (MCDI) is a low-cost technology for desalination. Typically, MCDI electrodes are fabricated using a slurry of nanoparticles in an organic solvent along with polyvinylidene fluoride (PVDF) polymeric binder. Recent studies of the environmental impact of CDI have pointed to the organic solvents used in the fabrication of CDI electrodes as key contributors to the overall environmental impact of the technology. Here, we report a scalable, aqueous processing approach to prepare MCDI electrodes using water-soluble polymer poly(vinyl alcohol) (PVA) as a binder and ion-exchange polymer. Electrodes are prepared by depositing aqueous slurry of activated carbon and PVA binder followed by coating with a thin layer of PVA-based cation- or anion-exchange polymer. When coated with ion-exchange layers, the PVA-bound electrodes exhibit salt adsorption capacities up to 14.4 mg/g and charge efficiencies up to 86.3%, higher than typically achieved for activated carbon electrodes with a hydrophobic polymer binder and ion-exchange membranes (5-13 mg/g). Furthermore, when paired with low-resistance commercial ion-exchange membranes, salt adsorption capacities exceed 18 mg/g. Our overall approach demonstrates a simple, environmentally friendly, cost-effective, and scalable method for the fabrication of high-capacity MCDI electrodes.


Assuntos
Purificação da Água , Carbono , Eletrodos , Troca Iônica , Membranas Artificiais
15.
Chem Soc Rev ; 44(21): 7916, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26370174

RESUMO

Correction for 'Structure, function, self-assembly, and applications of bottlebrush copolymers' by Rafael Verduzco et al., Chem. Soc. Rev., 2015, 44, 2405-2420.

16.
Chem Soc Rev ; 44(8): 2405-20, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25688538

RESUMO

Bottlebrush polymers are a type of branched or graft polymer with polymeric side-chains attached to a linear backbone, and the unusual architectures of bottlebrushes provide a number of unique and potentially useful properties. These include a high entanglement molecular weight, enabling rapid self-assembly of bottlebrush block copolymers into large domain structures, the self-assembly of bottlebrush block copolymer micelles in a selective solvent even at very low dilutions, and the functionalization of bottlebrush side-chains for recognition, imaging, or drug delivery in aqueous environments. This review article focuses on recent developments in the field of bottlebrush polymers with an emphasis on applications of bottlebrush copolymers. Bottlebrush copolymers contain two (or more) different types of polymeric side-chains. Recent work has explored the diverse properties and functions of bottlebrush polymers and copolymers in solutions, films, and melts, and applications explored include photonic materials, bottlebrush films for lithographic patterning, drug delivery, and tumor detection and imaging. We provide a brief introduction to bottlebrush synthesis and physical properties and then discuss work related to: (i) bottlebrush self-assembly in melts and bulk thin films, (ii) bottlebrushes for photonics and lithography, (iii) bottlebrushes for small molecule encapsulation and delivery in solution, and (iv) bottlebrush micelles and assemblies in solution. We briefly discuss three potential areas for future research, including developing a more quantitative model of bottlebrush self-assembly in the bulk, studying the properties of bottlebrushes at interfaces, and investigating the solution assembly of bottlebrush copolymers.

17.
Soft Matter ; 10(9): 1411-5, 2014 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-24651367

RESUMO

Monodomain liquid crystal elastomers (LCEs) are shape-responsive materials, but shape changes are typically limited to simple uniaxial extensions or contractions. Here, we demonstrate that complex surface patterns and shape changes, including patterned wrinkles, helical twisting, and reversible folding, can be achieved in LCE-polystyrene (PS) bilayers. LCE-PS bilayer shape changes are achieved in response to simple temperature changes and can be controlled through various material parameters including overall aspect ratio and LCE and polystyrene film thicknesses. Deposition of a patterned PS film on top of an LCE enables the preparation of an elastomer that reversibly twists and a folding leaf-like elastomer, which opens and closes in response to temperature changes. The phenomena are captured through finite element simulations, in quantitative agreement with experiments.

18.
Soft Matter ; 10(21): 3817-25, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24718905

RESUMO

All-conjugated block copolymers are an emerging class of polymeric materials promising for organic electronic applications, but further progress requires a better understanding of their microstructure including crystallinity and self-assembly through micro-phase segregation. Here, we demonstrate remarkable changes in the thin film structure of a model series of all-conjugated block copolymers with varying processing conditions. Under thermal annealing, poly(3-hexylthiophene)-b-poly(9',9'-dioctylfluorene) (P3HT-b-PF) all-conjugated block copolymers exhibit crystalline features of P3HT or PF, depending on the block ratio, and poor π-π stacking. Under chloroform solvent annealing, the block copolymers exhibit lamellar ordering, as evidenced by multiple reflections in grazing incidence wide- and small-angle X-ray scattering (GIWAXS and GISAXS), including an in-plane reflection indicative of order along the π-π stacking direction for both P3HT and PF blocks. The lamellae have a characteristic domain size of 4.2 nm, and this domain size is found to be independent of block copolymer molecular weight and block ratio. This suggests that lamellar self-assembly arises due to a combination of polymer block segregation and π-π stacking of both P3HT and PF polymer blocks. Strategies for predicting the microstructure of all-conjugated block copolymers must take into account intermolecular π-π stacking and liquid crystalline interactions not typically found in flexible coil block copolymers.

19.
Soft Matter ; 10(12): 2008-15, 2014 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-24652160

RESUMO

We explore the phase behaviour, solution conformation, and interfacial properties of bottlebrush polymers with side-chains comprised of poly(N-isopropylacrylamide) (PNIPAAM), a thermally responsive polymer that exhibits a lower critical solution temperature (LCST) in water. PNIPAAM bottlebrush polymers with controlled side-chain length and side-chain end-group structure are prepared using a "grafting-through" technique. Due to reduced flexibility of bottlebrush polymer side-chains, side-chain end-groups have a disproportionate effect on bottlebrush polymer solubility and phase behaviour. Bottlebrush polymers with a hydrophobic end-group have poor water solubilities and depressed LCSTs, whereas bottlebrush polymers with thiol-terminated side-chains are fully water-soluble and exhibit an LCST greater than that of PNIPAAM homopolymers. The temperature-dependent solution conformation of PNIPAAM bottlebrush polymers in D2O is analyzed by small-angle neutron scattering (SANS), and data analysis using the Guinier-Porod model shows that the bottlebrush polymer radius decreases as the temperature increases towards the LCST for PNIPAAM bottlebrush polymers with relatively long 9 kg mol(-1) side-chains. Above the LCST, PNIPAAM bottlebrush polymers can form a lyotropic liquid crystal phase in water. Interfacial tension measurements show that bottlebrush polymers reduce the interfacial tension between chloroform and water to levels comparable to PNIPAAM homopolymers without the formation of microemulsions, suggesting that bottlebrush polymers are unable to stabilize highly curved interfaces. These results demonstrate that bottlebrush polymer side-chain length and flexibility impact phase behavior, solubility, and interfacial properties.


Assuntos
Resinas Acrílicas/química , Polímeros/química , Soluções/química , Clorofórmio/química , Transição de Fase , Espalhamento a Baixo Ângulo , Solubilidade , Temperatura , Água/química
20.
Nano Lett ; 13(6): 2957-63, 2013 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-23687903

RESUMO

Organic electronic materials have the potential to impact almost every aspect of modern life including how we access information, light our homes, and power personal electronics. Nevertheless, weak intermolecular interactions and disorder at junctions of different organic materials limit the performance and stability of organic interfaces and hence the applicability of organic semiconductors to electronic devices. Here, we demonstrate control of donor-acceptor heterojunctions through microphase-separated conjugated block copolymers. When utilized as the active layer of photovoltaic cells, block copolymer-based devices demonstrate efficient photoconversion well beyond devices composed of homopolymer blends. The 3% block copolymer device efficiencies are achieved without the use of a fullerene acceptor. X-ray scattering results reveal that the remarkable performance of block copolymer solar cells is due to self-assembly into mesoscale lamellar morphologies with primarily face-on crystallite orientations. Conjugated block copolymers thus provide a pathway to enhance performance in excitonic solar cells through control of donor-acceptor interfaces.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa