Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Environ Sci Technol ; 54(1): 419-426, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31789508

RESUMO

The gas-liquid mass transfer coefficient is a key parameter to the design and operation of biotrickling filters that governs the transport rate of contaminants and oxygen from the gas phase to the liquid phase, where pollutant biodegradation occurs. Mass transfer coefficients are typically estimated via experimental procedures to produce empirical correlations, which are only valid for the bioreactor configuration and range of operational conditions under investigation. In this work, a new method for the estimation of the gas-liquid mass transfer coefficient in biotrickling filters is presented. This novel methodology couples a realistic description of the packing media (polyurethane foam without a biofilm) obtained using microtomography with computational fluid dynamics. The two-dimensional analysis reported in this study allowed capturing the mechanisms of the complex processes involved in the creeping porous air and water flow in the presence of capillary effects in biotrickling filters. Model predictions matched the experimental mass transfer coefficients (±30%) under a wide range of operational conditions.


Assuntos
Reatores Biológicos , Filtração , Biodegradação Ambiental , Biofilmes , Oxigênio
2.
Appl Microbiol Biotechnol ; 101(17): 6765-6777, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28685193

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) and volatile organic compounds (VOCs) are important indoor contaminants. Their hydrophobic nature hinders the possibility of biological abatement using biofiltration. Our aim was to establish whether the use of a consortium of Fusarium solani and Rhodococcus erythropolis shows an improved performance (in terms of mineralization rate and extent) towards the degradation of formaldehyde, as a slightly polar VOC; toluene, as hydrophobic VOC; and benzo[α]pyrene (BaP) as PAH at low concentrations compared to a single-species biofilm in serum bottles with vermiculite as solid support to mimic a biofilter and to relate the possible improvements with the surface hydrophobicity and partition coefficient of the biomass at three different temperatures. Results showed that the hydrophobicity of the surface of the biofilms was affected by the hydrophobicity of the carbon source in F. solani but it did not change in R. erythropolis. Similarly, the partition coefficients of toluene and BaP in F. solani biomass (both as pure culture and consortium) show a reduction of up to 38 times compared to its value in water, whereas this reduction was only 1.5 times in presence of R. erythropolis. Despite that increments in the accumulated CO2 and its production rate were found when F. solani or the consortium was used, the mineralization extent of toluene was below 25%. Regarding BaP degradation, the higher CO2 production rates and percent yields were obtained when a consortium of F. solani and R. erythropolis was used, despite a pure culture of R. erythropolis exhibits poor mineralization of BaP.


Assuntos
Benzo(a)pireno/metabolismo , Biodegradação Ambiental , Formaldeído/metabolismo , Fusarium/metabolismo , Rhodococcus/metabolismo , Tolueno/metabolismo , Poluição do Ar em Ambientes Fechados/prevenção & controle , Biomassa , Filtração/instrumentação , Consórcios Microbianos/fisiologia , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Compostos Orgânicos Voláteis/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-22375544

RESUMO

The effect of temperature and moisture on the elimination capacity (EC), CO(2) production and spore emission by Fusarium solani was studied in biofilters packed with vermiculite and fed with n- pentane. Three temperatures (15, 25 and 35°C) were tested and the highest average EC (64 g m(-3) h(-1)) and lower emission of spores (2.0 × 10(3) CFU m(-3) air) were obtained at 25°C. The effect of moisture content of the packing material indicates that the highest EC (65 g m(-3) h(-1)) was obtained at 50 % moisture. However, lowest emission (1.3 × 10(3) CFU m(-3) air) was obtained at 80 % moisture. Furthermore, the results show that a slight decrease in spore emission was found with increasing moisture content. In all cases, the depletion of the nitrogen source in the biofilter induced the sporulation, a decay of the EC and increased spore emission.


Assuntos
Filtração/métodos , Fusarium/metabolismo , Temperatura , Compostos Orgânicos Voláteis/metabolismo
4.
Bioresour Technol ; 353: 127141, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35405209

RESUMO

Methylocystis parvus OBBP accumulates polyhydroxybutyrate (PHB) using methane as the sole carbon and energy source. In this work, the feasibility of producing (R)-3-hydroxybutyric acid (R3HBA) via intracellularly accumulated PHB through depolymerization (in-vivo) was investigated. Results showed that a PHB to R3HBA conversion of 77.2 ± 0.9% (R3HBA titer of 0.153 ± 0.002 g L-1) can be attained in a mineral medium containing 1 g L-1 KNO3 at 30 °C with shaking at 200 rpm and a constant pH of 11 for 72 h. Nitrogen deprivation and neutral or acidic pHs strongly reduced the excreted R3HBA concentration. Reduced oxygen availability negatively affected the R3HBA yield, which decreased to 73.6 ± 4.9% (titer of 0.139 ± 0.01 g L-1) under microaerobic conditions. Likewise, the presence of increasing concentrations of R3HBA in the medium before the onset of PHB depolymerization reduced the initial R3HBA release rate and R3HBA yield.


Assuntos
Metano , Methylocystaceae , Ácido 3-Hidroxibutírico , Hidroxibutiratos , Poliésteres
5.
Biotechnol Bioeng ; 108(4): 758-65, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21404250

RESUMO

Fungal biofilters have been recently studied as an alternative to the bacterial systems for the elimination of hydrophobic volatile organic compounds (VOC). Fungi foster reduced transport limitation of hydrophobic VOCs due to their hydrophobic surface and extended gas exchange area associated to the hyphal growth. Nevertheless, one of their principal drawbacks is their slow growth, which is critical in the start-up of fungal biofilters. This work compares the use of different carbon sources (glycerol, 1-hexanol, wheat bran, and n-hexane) to reduce the start-up period and sustain high n-hexane elimination capacities (EC) in biofilters inoculated with Fusarium solani. Four parallel experiments were performed with the different media and the EC, the n-hexane partition coefficient, the biomass production and the specific consumption rate were evaluated. Biofilters were operated with a residence time of 1.3 min and an inlet n-hexane load of 325 g m(-3) (reactor) h(-1). The time to attain maximum EC once gaseous n-hexane was fed was reduced in the three experiments with alternate substrates, as compared to the 36 days needed with the control where only n-hexane was added. The shortest adaptation period was 7 days when wheat bran was initially used obtaining a maximum EC of 160 g m(-3) (reactor) h(-1) and a critical load of 55 g m(-3) (reactor) h(-1). The results were also consistent with the pressure drop, the amount of biomass produced and its affinity for the gaseous n-hexane, as represented by its partition coefficient.


Assuntos
Biodegradação Ambiental , Reatores Biológicos , Fungos/metabolismo , Hexanos/isolamento & purificação , Compostos Orgânicos Voláteis/isolamento & purificação , Fibras na Dieta/metabolismo , Glicerol/metabolismo , Hexanos/metabolismo , Hexanóis/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Compostos Orgânicos Voláteis/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-32318553

RESUMO

Polyhydroxyalkanoates (PHAs) are ubiquitous prokaryotic storage compounds of carbon and energy, acting as sinks for reducing power during periods of surplus of carbon source relative to other nutrients. With close to 150 different hydroxyalkanoate monomers identified, the structure and properties of these polyesters can be adjusted to serve applications ranging from food packaging to biomedical uses. Despite its versatility and the intensive research in the area over the last three decades, the market share of PHAs is still low. While considerable rich literature has accumulated concerning biochemical, physiological, and genetic aspects of PHAs intracellular accumulation, the costs of substrates and processing costs, including the extraction of the polymer accumulated in intracellular granules, still hampers a more widespread use of this family of polymers. This review presents a comprehensive survey and critical analysis of the process engineering and metabolic engineering strategies reported in literature aimed at the production of chiral (R)-hydroxycarboxylic acids (RHAs), either from the accumulated polymer or by bypassing the accumulation of PHAs using metabolically engineered bacteria, and the strategies developed to recover the accumulated polymer without using conventional downstream separations processes. Each of these topics, that have received less attention compared to PHAs accumulation, could potentially improve the economy of PHAs production and use. (R)-hydroxycarboxylic acids can be used as chiral precursors, thanks to its easily modifiable functional groups, and can be either produced de-novo or be obtained from recycled PHA products. On the other hand, efficient mechanisms of PHAs release from bacterial cells, including controlled cell lysis and PHA excretion, could reduce downstream costs and simplify the polymer recovery process.

7.
Chemosphere ; 240: 124924, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31726601

RESUMO

In this work, a 3D computational tomography (CT) of the packing material of a laboratory column biofilter is used to model airflow containing three contaminants. The degradation equations for toluene, formaldehyde and benzo[α]pyrene (BaP), were one-way coupled to the CFD model. Physical validation of the model was attained by comparing pressure drops with experimental measurement, while experimental elimination capacities for the pollutants were used to validate the biodegradation kinetics. The validated model was used to assess the existence of channeling and to predict the impact of the three-dimensional porous geometry on the mass transfer of the contaminants in the gas phase. Our results indicate that a physically meaningful simulation can be obtained using the techniques and approach presented in this work, without the need of performing experiments to obtain macroscopic parameters such as gas-phase axial and radial dispersion coefficients and porosities.


Assuntos
Poluentes Atmosféricos/química , Benzo(a)pireno/química , Formaldeído/química , Tolueno/química , Biodegradação Ambiental , Filtração/métodos , Gases , Tomografia , Tomografia Computadorizada por Raios X
8.
Chemosphere ; 226: 24-35, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30913425

RESUMO

Methane is one of the most important greenhouse gases emitted from natural and human activities. It is scarcely soluble in water; thus, it has a low bioavailability for microorganisms able to degrade it. In this work, the capacity of the fungus Fusarium solani to improve the solubility of methane in water and to biodegrade methane was assayed. Experiments were performed in microcosms with vermiculite as solid support and mineral media, at temperatures between 20 and 35 °C and water activities between 0.9 and 0.95, using pure cultures of F. solani and a methanotrophic consortium (Methylomicrobium album and Methylocystis sp) as a control. Methane was the only carbon and energy source. Results indicate that using thermally inactivated biomass of F. solani, decreases the partition coefficient of methane in water up to two orders of magnitude. Moreover, F. solani can degrade methane, in fact at 35 °C and the highest water activity, the methane degradation rate attained by F. solani was 300 mg m-3 h-1, identical to the biodegradation rate achieved by the consortium of methanotrophic bacteria.


Assuntos
Biodegradação Ambiental/efeitos dos fármacos , Fusarium/química , Metano/química , Fusarium/patogenicidade
9.
Biotechnol Bioeng ; 101(6): 1182-92, 2008 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-18781682

RESUMO

This work describes the growth of filamentous fungi in biofilters for the degradation of hydrophobic VOCs. The study system was n-hexane and Fusarium solani B1. The system is mathematically described and the main physical, kinetic data and morphological parameters were obtained by independent experiments and validated with data from laboratory experiments. The model describes the increase in the transport area by the growth of the filamentous cylindrical mycelia and its relation with n-hexane elimination in quasi-stationary state in a biofilter. The model describing fungal growth includes Monod-Haldane kinetic and hyphal elongation and ramification. A specific surface area of transport (SSAT) of 1.91 x 10(5) m(2) m(-3) and a maximum elimination capacity (EC) of 248 g m(-3) h(-1) were obtained by the mathematical model simulation, with a 10% of error with respect to the experimental EC.


Assuntos
Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Animais , Cinética , Modelos Teóricos , Micélio/crescimento & desenvolvimento , Micélio/metabolismo
10.
Biotechnol Adv ; 36(4): 1079-1093, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29559381

RESUMO

Volatile organic compounds (VOCs) are ubiquitous contaminants that can be found both in outdoor and indoor air, posing risks to human health and the ecosystems. The treatment of air contaminated with VOCs in low concentrations can be effectively performed using biofiltration, especially when VOCs are hydrophilic. However, the performance of biofilters inoculated with bacteria has been found to be low with sparsely water soluble molecules when compared to biofilters where fungi develop. Using conceptual and mathematical models, this review presents an overview of the physical, chemical and biological mechanisms that explain the differences in the performance of fungal and bacterial biofilters. Moreover, future research needs are proposed, with an emphasis on integrated models describing the biological and chemical reactions with the mass transfer using high-resolution descriptions of the packing material.


Assuntos
Poluentes Atmosféricos/isolamento & purificação , Reatores Biológicos , Filtração/métodos , Fungos , Modelos Biológicos , Compostos Orgânicos Voláteis/isolamento & purificação , Biomassa , Desenho de Equipamento , Filtração/instrumentação , Fungos/química , Fungos/metabolismo
11.
Biotechnol Lett ; 28(24): 2011-7, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17021662

RESUMO

The filamentous fungus, Fusarium solani, was grown in liquid and solid culture with glucose, glycerol, 1-hexanol and n-hexane. The partition coefficient with gaseous hexane (HPC) in the biomass was lower when grown in liquid medium with 1-hexanol (0.4) than with glycerol (0.8) or glucose (1) The HPC for surface growth were 0.2 for 1-hexanol, 0.5 for glycerol, 0.6 for glucose, and 0.2 for F. solani biomass obtained from a biofilter fed with gaseous n-hexane. These values show a 200-fold increase in n-hexane solubility when compared to water (HPC = 42). Lower HPC values can be partially explained by increased lipid accumulation with 1-hexanol, 10.5% (w/w) than with glycerol (8.5% w/w) or glucose (7.1% w/w). The diameter of the hyphae diminished from 3 microm to 2 microm when F. solani was grown on solid media with gaseous n-hexane thereby doubling the surface area for gaseous substrate exchange. The surface hydrophobicity of the mycelia increased consistently with more hydrophobic substrates and the contact angle of a drop of water on the mycelial mat was 113 degrees when grown on n-hexane as compared to 75 degrees with glucose. The fungus thus adapts to hydrophobic conditions and these changes may explain the higher uptake of gaseous hydrophobic substances by fungi in biofilters.


Assuntos
Meios de Cultura/farmacologia , Fusarium/efeitos dos fármacos , Hexanos/química , Hexanos/farmacocinética , Hexanóis/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Transição de Fase , Proliferação de Células/efeitos dos fármacos , Meios de Cultura/química , Técnicas de Cultura , Fusarium/química , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Gases/química , Microbiologia Industrial/métodos , Propriedades de Superfície/efeitos dos fármacos
12.
Chemosphere ; 157: 89-96, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27209557

RESUMO

The role of the aerial mycelium of the fungus Fusarium solani in the biodegradation of n-pentane was evaluated in a continuous fungal bioreactor (FB) to determine the contribution of the aerial (hyphae) and non-aerial (monolayer) fungal biomass. The experimental results showed that although the aerial biomass fraction represented only 25.9(±3)% on a dry weight basis, it was responsible for 71.6(±4)% of n-pentane removal. The FB attained a maximum elimination capacity (ECmax) of 680(±30) g m(-3) h(-1) in the presence of fungal hyphae (which supported an interfacial area of 5.5(±1.5) × 10(6) m(2) m(-3)). In addition, a mathematical model capable of describing n-pentane biodegradation by the filamentous fungus was also developed and validated against the experimental data. This model successfully predicted the influence of the aerial biomass fraction and its partition coefficient on the n-pentane removal, with EC decreasing from 680(±30) g m(-3) h(-1) to values of 200(±14) g m(-3) h(-1) when the dimensionless partition coefficient increased from 0.21(±0.09) with aerial biomass to 0.88(±0.06) without aerial biomass.


Assuntos
Reatores Biológicos/microbiologia , Fusarium/crescimento & desenvolvimento , Modelos Teóricos , Micélio/crescimento & desenvolvimento , Pentanos/análise , Compostos Orgânicos Voláteis/análise , Biodegradação Ambiental , Biomassa , Fusarium/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Micélio/metabolismo
13.
Sci Total Environ ; 537: 352-9, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26282769

RESUMO

Temuco is one of the most highly wood-smoke polluted cities in Chile; however, the diesel mobile sources are growing very fast in the past 10 years and so far very few studies have been done. The main goal of this research was to develop a 2013 emission inventory of criteria pollutants and Benzo[a]pyrene (BaP) and to evaluate the use of six biodiesel blends of 0%, 1%, 4%, 8%, 12%, and 20% by volume of fuel in diesel motors from the vehicle fleet within the mentioned areas using the Motor Vehicle Emission Simulator (MOVES). Input parameters for the base year 2005 were estimated to implement and adapt the model in Chile, while results of NOx, PM10, PM2.5, NH3, CO2 equivalent and SO2 were compared with the Chilean Emission Inventory estimated by the model "Methodology for the Calculation of Vehicle Emissions." The 2013 emissions reduced with respect to 2005, in the majority of the contaminants analyzed, despite the 47% increase in the annual miles traveled. Using biodiesel blends, an emission reduction was estimated at up to 15% in particulate matter, BaP, and CO for the year 2013, as well as an increment of 2% in NOx emissions, attributed to low sulfur content (50 ppm) in the diesel and the antiquity of the vehicle fleet. The results obtained gave evidence of the influence of the biodiesel use in the pollutant emissions to improve the Chilean air quality, as well as providing a strategy for this air quality management.


Assuntos
Poluentes Atmosféricos/análise , Benzo(a)pireno/análise , Monitoramento Ambiental/métodos , Emissões de Veículos/análise , Biocombustíveis , Chile , Material Particulado/análise
14.
Chemosphere ; 134: 475-81, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26022137

RESUMO

This study addresses human health concerns in the city of Temuco that are attributed to wood smoke and related pollutants associated with wood burning activities that are prevalent in Temuco. Polycyclic Aromatic Hydrocarbons (PAHs) were measured in air across urban and rural sites over three seasons in Temuco using polyurethane foam (PUF) disk passive air samplers (PUF-PAS). Concentrations of ΣPAHs (15 congeners) in air ranged from BDL to ∼70 ng m(-3) and were highest during the winter season, which is attributed to emissions from residential heating by wood combustion. The results for all three seasons showed that the PAH plume was widespread across all sites including rural sites on the outskirts of Temuco. Some interesting variations were observed between seasons in the composition of PAHs, which were attributed to differences in seasonal point sources. A comparison of the PAH composition in the passive samples with active samples (gas+particle phase) from the same site revealed similar congener profiles. Overall, the study demonstrated that the PUF disk passive air sampler provides a simple approach for measuring PAHs in air and for tracking effectiveness of pollution control measures in urban areas in order to improve public health.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Hidrocarbonetos Policíclicos Aromáticos/análise , Madeira/química , Atmosfera , Chile , Cidades , Análise Custo-Benefício , Análise de Componente Principal , Controle de Qualidade , Estações do Ano , Fumaça , Tempo (Meteorologia)
15.
Environ Int ; 66: 174-81, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24607502

RESUMO

Temuco is one of the most highly wood smoke polluted cities in Chile; however, there is scarce evidence of respiratory morbidity due to fine particulate matter. We aimed to estimate the relationship between daily concentration of ultrafine particles (UFP), with an aerodynamic diameter ≤ 0.1 µm, and outpatient visits for respiratory illness at medical care centers of Temuco, Chile, from August the 20th, 2009 to June the 30th, 2011. The Air Pollution Health Effects European Approach (APHEA2) protocol was followed, and a multivariate semi-parametric Poisson regression model was fitted with GAM techniques using R-Project statistical package; controlling for trend, seasonality, and confounders. The daily UFP were measured by a MOUDI NR-110 sampler. We found that results of the statistical analyses show significant associations between UFP and respiratory outpatient visits, with the elderly (population ≥ 65 years), being the group that presented the greatest risk. An interquartile increase of 4.73 µg/m(3) in UFP (lag 5 days) was associated with respiratory outpatient visits with a relative risk (RR) of 1.1458 [95% CI (1.0497-1.2507)] for the elderly. These results show novel findings regarding the relevance of daily UFP concentrations and health risk, especially for susceptible population in a wood smoke polluted city.


Assuntos
Exposição Ambiental , Tamanho da Partícula , Material Particulado/toxicidade , Sistema Respiratório/efeitos dos fármacos , Doenças Respiratórias/epidemiologia , Fumaça/efeitos adversos , Madeira/química , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Chile/epidemiologia , Demografia , Humanos , Pessoa de Meia-Idade , Análise de Regressão , Risco , Tempo , Adulto Jovem
16.
J Environ Manage ; 84(2): 115-22, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16949726

RESUMO

In this work the variation in the elimination capacity of a biofilter as a function of the gas flow and toluene concentration was studied. A bioreactor 0.75 m high x 14.5 cm diameter was used, divided into three equal stages, using compost to support the microorganisms, and sea shells to control the pH. The biofiltration of toluene was evaluated for flows between 0.12 and 0.73 m(3)h(-1) in a concentration range of 1-3.2 gm(-3). It was observed that on increasing the toluene inlet load by 90% (from 37 to 70 gm(3)h(-1)), the conversion by the biofilter varied by only 5% (from 98% to 93%). The biofiltration system used achieved elimination capacities of up to 82 gm(-3)h(-1) for a toluene load of 100 gm(-3)h(-1).


Assuntos
Poluição do Ar/prevenção & controle , Reatores Biológicos , Filtração/métodos , Gases , Tolueno , Movimentos do Ar , Biodegradação Ambiental , Filtração/instrumentação , Concentração de Íons de Hidrogênio , Temperatura , Fatores de Tempo , Tolueno/isolamento & purificação , Tolueno/metabolismo
17.
Electron. j. biotechnol ; Electron. j. biotechnol;11(4): 3-4, Oct. 2008. ilus, tab
Artigo em Inglês | LILACS | ID: lil-531931

RESUMO

In this work the variation in the toluene elimination capacity of an airlift bioreactor as a function of the toluene inlet load, using compost as the support material for the microorganisms was studied. In order to evaluate the flexibility of the reactor under changing toluene load, the toluene biodegradation was measured for flows from 2.4 x 10-2 to 0.132 m³ h-1, and a concentration range from 1.4 to 0.8 g m-3. Results show a 100 percent removal efficiency (RE) for minor flows, however, for a flow increase of 450 percent the RE decreased 40 percent, reflecting the equipments weak flexibility in varying flows. Meanwhile the maximum elimination capacity obtained was 230 g m-3 h-1, for toluene loads of 550 g m-3 h-1, corresponding to a flow of 0.132 m³ h-1. It was found that a average biomass concentration in suspension of 3700 g m-3, reflected EC's of 203 g m-3 h-1.


Assuntos
Compostos Orgânicos Voláteis/análise , Filtros Biológicos/métodos , Compostos Orgânicos Voláteis , Biomassa , Poluentes Industriais , Tolueno
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa