Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 324(4): L400-L412, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36807882

RESUMO

Muscle atrophy is an extrapulmonary complication of acute exacerbations (AE) in chronic obstructive pulmonary disease (COPD). The endogenous production and therapeutic application of glucocorticoids (GCs) have been implicated as drivers of muscle loss in AE-COPD. The enzyme 11 ß-hydroxysteroid dehydrogenase 1 (11ß-HSD1) activates GCs and contributes toward GC-induced muscle wasting. To explore the potential of 11ßHSD1 inhibition to prevent muscle wasting here, the objective of this study was to ascertain the contribution of endogenous GC activation and amplification by 11ßHSD1 in skeletal muscle wasting during AE-COPD. Emphysema was induced by intratracheal (IT) instillation of elastase to model COPD in WT and 11ßHSD1/KO mice, followed by vehicle or IT-LPS administration to mimic AE. µCT scans were obtained prior and at study endpoint 48 h following IT-LPS, to assess emphysema development and muscle mass changes, respectively. Plasma cytokine and GC profiles were determined by ELISA. In vitro, myonuclear accretion and cellular response to plasma and GCs were determined in C2C12 and human primary myotubes. Muscle wasting was exacerbated in LPS-11ßHSD1/KO animals compared with WT controls. RT-qPCR and western blot analysis showed elevated catabolic and suppressed anabolic pathways in muscle of LPS-11ßHSD1/KO animals relative to WTs. Plasma corticosterone levels were higher in LPS-11ßHSD1/KO animals, whereas C2C12 myotubes treated with LPS-11ßHSD1/KO plasma or exogenous GCs displayed reduced myonuclear accretion relative to WT counterparts. This study reveals that 11ß-HSD1 inhibition aggravates muscle wasting in a model of AE-COPD, suggesting that therapeutic inhibition of 11ß-HSD1 may not be appropriate to prevent muscle wasting in this setting.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1 , Enfisema , Doença Pulmonar Obstrutiva Crônica , Animais , Humanos , Camundongos , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Glucocorticoides/farmacologia , Lipopolissacarídeos , Atrofia Muscular/etiologia , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Doença Pulmonar Obstrutiva Crônica/complicações
2.
J Appl Clin Med Phys ; 21(6): 63-72, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32237274

RESUMO

To evaluate the accuracy of a commercial optical surface tracking (OST) system and to demonstrate how it can be implemented to monitor patient positioning during non-coplanar single isocenter stereotactic treatments of brain metastases. A 3-camera OST system was used (Catalyst HD™, C-RAD) on a TruebeamSTx with a 6DoF couch. The setup accuracy and agreement between the OST system, and CBCT and kV-MV imaging at couch angles 0° and 270°, respectively, were examined. Film measurements at 3 depths in the Rando-Alderson phantom were performed using a single isocenter non-coplanar VMAT plan containing 4 brain lesions. Setup of the phantom was performed with CBCT at couch 0° and subsequently monitored by OST at other couch angles. Setup data for 7 volunteers were collected to evaluate the accuracy and reproducibility of the OST system at couch angles 0°, 45°, 90°, 315°, and 270°. These results were also correlated to the couch rotation offsets obtained by a Winston-Lutz (WL) test. The Rando-Alderson phantom, as well as volunteers, were fixated using open face masks (Orfit). For repeated tests with the Rando-Alderson phantom, deviations between rotational and translational isocenter corrections for CBCT and OST systems are always within 0.2° (pitch, roll, yaw), and 0.1mm and 0.5mm (longitudinal, lateral, vertical) for couch positions 0° and 270°, respectively. Dose deviations between the film and TPS doses in the center of the 4 lesions were -1.2%, -0.1%, -0.0%, and -1.9%. Local gamma evaluation criteria of 2%/2 mm and 3%/1 mm yielded pass rates of 99.2%, 99.2%, 98.6%, 89.9% and 98.8%, 97.5%, 81.7%, 78.1% for the 4 lesions. Regarding the volunteers, the mean translational and rotational isocenter shift values were (0.24 ± 0.09) mm and (0.15 ± 0.07) degrees. Largest isocenter shifts were found for couch angles 45˚ and 90˚, confirmed by WL couch rotation offsets. Patient monitoring during non-coplanar VMAT treatments of brain metastases is feasible with submillimeter accuracy.


Assuntos
Neoplasias Encefálicas , Radiocirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/terapia , Humanos , Posicionamento do Paciente , Imagens de Fantasmas , Planejamento da Radioterapia Assistida por Computador , Reprodutibilidade dos Testes
3.
Int J Mol Sci ; 19(9)2018 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-30154339

RESUMO

Endometrial cancer (EC) is the most common gynaecological malignancy in Western society and the majority of cases are estrogen dependent. While endocrine drugs proved to be of insufficient therapeutic value in the past, recent clinical research shows promising results by using combinational regimens and pre-clinical studies and identified potential novel endocrine targets. Relevant pre-clinical models can accelerate research in this area. In the present study we describe an orthotopic and estrogen dependent xenograft mouse model of EC. Tumours were induced in one uterine horn of female athymic nude mice using the well-differentiated human endometrial adenocarcinoma Ishikawa cell line-modified to express the luciferase gene for bioluminescence imaging (BLI). BLI and contrast-enhanced computed-tomograph (CE-CT) were used to measure non-invasive tumour growth. Controlled estrogen exposure was achieved by the use of MedRod implants releasing 1.5 µg/d of 17ß-estradiol (E2) in ovariectomized mice. Stable E2 serum concentration was demonstrated by LC-MS/MS. Induced tumours were E2 responsive as increased tumour growth was observed in the presence of E2 but not placebo, assessed by BLI, CE-CT, and tumour weight at sacrifice. Metastatic spread was assessed macroscopically by BLI and histology and was seen in the peritoneal cavity, in the lymphovascular space, and in the thoracic cavity. In conclusion, we developed an orthotopic xenograft mouse model of EC that exhibits the most relevant features of human disease, regarding metastatic spread and estrogen dependency. This model offers an easy to manipulate estrogen dosage (by simply adjusting the MedRod implant length), image-guided monitoring of tumour growth, and objectively measurable endpoints (including tumour weight). This is an excellent in vivo tool to further explore endocrine drug regimens and novel endocrine drug targets for EC.


Assuntos
Modelos Animais de Doenças , Neoplasias do Endométrio/etiologia , Neoplasias do Endométrio/patologia , Estrogênios/efeitos adversos , Animais , Estrogênios/administração & dosagem , Feminino , Xenoenxertos , Humanos , Aumento da Imagem , Medições Luminescentes , Camundongos , Tomografia Computadorizada por Raios X , Carga Tumoral , Microtomografia por Raio-X
4.
Respir Res ; 18(1): 75, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28464882

RESUMO

BACKGROUND: Exacerbations in COPD are often accompanied by pulmonary and systemic inflammation, and associated with increased susceptibility to and prevalence of weight loss and muscle wasting. Muscle mass loss during disease exacerbations may contribute to emphysema-associated muscle atrophy. However, whether pulmonary inflammation in presence of emphysema differentially affects skeletal muscle, including protein synthesis and degradation signaling pathways has not previously been addressed. The aims of this study were to 1) develop a mouse model of disease exacerbation-associated muscle wasting, 2) evaluate whether emphysema and muscle wasting can be monitored non-invasively and 3) assess alterations in muscle protein turnover regulation. METHODS: Emphysema was induced by three, weekly intra-tracheal (IT) elastase (E) or vehicle control (vc) instillations, followed by one single IT-LPS bolus (L) or vc instillation to mimic pulmonary inflammation-driven disease exacerbation. Consequently, four experimental groups were defined: vc/vc ('C'), E/vc ('E'), vc/LPS ('L'), E/LPS ('E + L'). Using micro cone-beam CT-scans, emphysema development and muscle mass changes were monitored, and correlated to muscle weight 48 h after LPS instillation. Protein turnover signaling was assessed in muscle tissue collected 24 h post LPS instillation. RESULTS: Micro-CT imaging correlated strongly with established invasive measurements of emphysema and muscle atrophy. Pulmonary inflammation following LPS instillation developed irrespective of emphysema and body and muscle weight were similarly reduced in the 'L' and 'E + L' groups. Accordingly, mRNA and protein expression levels of genes of the ubiquitin-proteasome pathway (UPS) and the autophagy-lysosomal pathway (ALP) were upregulated in skeletal muscle following IT-LPS ('L' and 'E + L'). In contrast, mTOR signaling, which controls ALP and protein synthesis, was reduced by pulmonary inflammation ('L' and 'E + L') as well as emphysema as a single insult ('E') compared to control. CONCLUSION: Changes in lung tissue density and muscle mass can be monitored non-invasively to evaluate emphysema and muscle atrophy longitudinally. Acute loss of muscle mass evoked by pulmonary inflammation is similar in control and emphysematous mice. Although muscle atrophy cues in response to pulmonary inflammation are not altered by emphysema, emphysema itself affects protein synthesis and ALP signaling, which may interfere with muscle mass recovery and impair maintenance of muscle mass in emphysema.


Assuntos
Modelos Animais de Doenças , Enfisema/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Pneumonia/metabolismo , Doença Aguda , Animais , Enfisema/complicações , Enfisema/patologia , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos C57BL , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Pneumonia/complicações , Pneumonia/patologia , Proteólise , Transdução de Sinais
5.
Acta Oncol ; 56(11): 1487-1494, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28849731

RESUMO

BACKGROUND: Dose-guided adaptive radiation therapy (DGART) is the systematic evaluation and adaptation of the dose delivery during treatment for an individual patient. The aim of this study is to define quantitative action levels for DGART by evaluating changes in 3D dose metrics in breast cancer and correlate them with clinical expert evaluation. MATERIAL AND METHODS: Twenty-three breast cancer treatment plans were evaluated, that were clinically adapted based on institutional IGRT guidelines. Reasons for adaptation were variation in seroma, hematoma, edema, positioning or problems using voluntary deep inspiration breath hold. Sixteen patients received a uniform dose to the breast (clinical target volume 1; CTV1). Six patients were treated with a simultaneous integrated boost to CTV2. The original plan was copied to the CT during treatment (re-CT) or to the stitched cone-beam CT (CBCT). Clinical expert evaluation of the re-calculated dose distribution and extraction of dose-volume histogram (DVH) parameters were performed. The extreme scenarios were evaluated, assuming all treatment fractions were given to the original planning CT (pCT), re-CT or CBCT. Reported results are mean ± SD. RESULTS: DVH results showed a mean dose (Dmean) difference between pCT and re-CT of -0.4 ± 1.4% (CTV1) and -1.4 ± 2.1% (CTV2). The difference in V95% was -2.6 ± 4.4% (CTV1) and -9.8 ± 8.3% (CTV2). Clinical evaluation and DVH evaluation resulted in a recommended adaptation in 17/23 or 16/23 plans, respectively. Applying thresholds on the DVH parameters: Dmean CTV, V95% CTV, Dmax, mean lung dose, volume exceeding 107% (uniform dose) or 90% (SIB) of the prescribed dose enabled the identification of patients with an assumed clinically relevant dose difference, with a sensitivity of 0.89 and specificity of 1.0. Re-calculation on CBCT imaging identified the same plans for adaptation as re-CT imaging. CONCLUSIONS: Clinical expert evaluation can be related to quantitative DVH parameters on re-CT or CBCT imaging to select patients for DGART.


Assuntos
Neoplasias da Mama/radioterapia , Técnicas de Apoio para a Decisão , Imageamento Tridimensional/métodos , Órgãos em Risco/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Tomografia Computadorizada de Feixe Cônico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Dosagem Radioterapêutica , Radioterapia de Intensidade Modulada/métodos , Estudos Retrospectivos
6.
J Appl Clin Med Phys ; 18(1): 186-195, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28291941

RESUMO

PURPOSE: The aim of this study was to evaluate experimentally the accuracy of the dose calculation algorithm AcurosXB in small field highly modulated Volumetric Modulated Arc Therapy (VMAT). METHOD: The 1000SRS detector array inserted in the rotational Octavius 4D phantom (PTW) was used for 3D dose verification of VMAT treatments characterized by small to very small targets. Clinical treatment plans (n = 28) were recalculated on the phantom CT data set in the Eclipse TPS. All measurements were done on a Varian TrueBeamSTx, which can provide the jaw tracking technique (JTT). The effect of disabling the JTT, thereby fixing the jaws at static field size of 3 × 3 cm2 and applying the MLC to shape the smallest apertures, was investigated for static fields between 0.5 × 0.5-3 × 3 cm2 and for seven VMAT patients with small brain metastases. The dose calculation accuracy has been evaluated by comparing the measured and calculated dose outputs and dose distributions. The dosimetric agreement has been presented by a local gamma evaluation criterion of 2%/2 mm. RESULTS: Regarding the clinical plans, the mean ± SD of the volumetric gamma evaluation scores considering the dose levels for evaluation of 10%, 50%, 80% and 95% are (96.0 ± 6.9)%, (95.2 ± 6.8)%, (86.7 ± 14.8)% and (56.3 ± 42.3)% respectively. For the smallest field VMAT treatments, discrepancies between calculated and measured doses up to 16% are obtained. The difference between the 1000SRS central chamber measurements compared to the calculated dose outputs for static fields 3 × 3, 2 × 2, 1 × 1 and 0.5 × 0.5 cm2 collimated with MLC whereby jaws are fixed at 3 × 3 cm2 and for static fields shaped with the collimator jaws only (MLC retracted), is on average respectively, 0.2%, 0.8%, 6.8%, 5.7% (6 MV) and 0.1%, 1.3%, 11.7%, 21.6% (10 MV). For the seven brain mets patients was found that the smaller the target volumes, the higher the improvement in agreement between measured and calculated doses after disabling the JTT. CONCLUSION: Fixing the jaws at 3 × 3 cm2 and using the MLC with high positional accuracy to shape the smallest apertures in contrast to the JTT is currently found to be the most accurate treatment technique.


Assuntos
Algoritmos , Neoplasias Encefálicas/cirurgia , Planejamento de Assistência ao Paciente , Imagens de Fantasmas , Radiocirurgia/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Registro da Relação Maxilomandibular , Órgãos em Risco/efeitos da radiação , Dosagem Radioterapêutica
7.
Acta Oncol ; 54(9): 1483-9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26219958

RESUMO

BACKGROUND: Use of highly conformal radiotherapy in patients with head and neck carcinoma may lead to under-/overdosage of gross target volume (GTV) and organs at risk (OAR) due to changes in patients' anatomy. A method to achieve more effective radiation treatment combined with less toxicity is dose-guided radiotherapy (DGRT). The aim of this study was to evaluate discrepancies between planned and actually delivered radiation dose in head and neck patients and to identify predictive factors. METHODS: In this retrospective analysis, 20 patients with cT2-4 N0-3 M0 carcinoma originating from oropharynx, oral cavity, larynx and hypopharynx (Cohort 1), and seven patients with cT1-4 N0-3 M0 nasopharyngeal carcinoma (Cohort 2) treated with primary (chemo)radiotherapy and undergoing weekly kV-CBCT scans were included. Radiation dose was recalculated on 184 kV-CBCT images, which was quantified by D95% (GTV), Dmean (parotid and submandibular glands) and D2% (spinal cord). Predictive factors investigated for changes in these dose metrics were: gender, age, cT/N-stage, tumor grade, HPV-status, systemic therapy, body mass index at start of treatment, weight loss and volume change over the duration of the radiotherapy. RESULTS: There was no significant difference between the planned and delivered dose for GTV and OARs of Week 1 to subsequent weeks for Cohort 1. In Cohort 2, actually delivered Dmean to parotid glands was significant higher than planned dose (1.1 Gy, p = 0.002). No clinically relevant correlations between dose changes and predictive factors were found. CONCLUSION: Weekly dose calculations do not seem to improve dose delivery for patients with tumors of the oral cavity, oropharynx, larynx and hypopharynx. In patients with nasopharyngeal carcinoma, however, mid-treatment imaging may facilitate DGRT.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Neoplasias de Cabeça e Pescoço/radioterapia , Dosagem Radioterapêutica , Idoso , Idoso de 80 Anos ou mais , Carcinoma de Células Escamosas/diagnóstico por imagem , Carcinoma de Células Escamosas/radioterapia , Quimiorradioterapia , Feminino , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Planejamento da Radioterapia Assistida por Computador , Estudos Retrospectivos , Redução de Peso
8.
Acta Oncol ; 54(9): 1638-42, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26219959

RESUMO

BACKGROUND: Accurate stopping power estimation is crucial for treatment planning in proton therapy, and the uncertainties in stopping power are currently the largest contributor to the employed dose margins. Dual energy x-ray computed tomography (CT) (clinically available) and proton CT (in development) have both been proposed as methods for obtaining patient stopping power maps. The purpose of this work was to assess the accuracy of proton CT using dual energy CT scans of phantoms to establish reference accuracy levels. MATERIAL AND METHODS: A CT calibration phantom and an abdomen cross section phantom containing inserts were scanned with dual energy and single energy CT with a state-of-the-art dual energy CT scanner. Proton CT scans were simulated using Monte Carlo methods. The simulations followed the setup used in current prototype proton CT scanners and included realistic modeling of detectors and the corresponding noise characteristics. Stopping power maps were calculated for all three scans, and compared with the ground truth stopping power from the phantoms. RESULTS: Proton CT gave slightly better stopping power estimates than the dual energy CT method, with root mean square errors of 0.2% and 0.5% (for each phantom) compared to 0.5% and 0.9%. Single energy CT root mean square errors were 2.7% and 1.6%. Maximal errors for proton, dual energy and single energy CT were 0.51%, 1.7% and 7.4%, respectively. CONCLUSION: Better stopping power estimates could significantly reduce the range errors in proton therapy, but requires a large improvement in current methods which may be achievable with proton CT.


Assuntos
Terapia com Prótons , Imagem Radiográfica a Partir de Emissão de Duplo Fóton/instrumentação , Planejamento da Radioterapia Assistida por Computador , Tomografia Computadorizada por Raios X/instrumentação , Tomografia Computadorizada por Raios X/métodos , Benchmarking , Calibragem , Simulação por Computador , Humanos , Método de Monte Carlo , Imagens de Fantasmas
9.
Acta Oncol ; 54(9): 1501-7, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26179632

RESUMO

BACKGROUND: Geometric changes are frequent during the course of treatment of lung cancer patients. This may potentially result in deviations between the planned and actual delivered dose. Electronic portal imaging device (EPID)-based integrated transit planar portal dosimetry (ITPD) is a fast method for absolute in-treatment dose verification. The aim of this study was to investigate if ITPD could detect geometric changes in lung cancer patients. MATERIALS AND METHODS: A total of 460 patients treated with volumetric modulated arc therapy (VMAT) following daily cone beam computed tomography (CT)-based setup were visually inspected for geometrical changes on a daily basis. Forty-six patients were subject to changes and had a re-CT and an adaptive treatment plan. The reasons for adaptation were: change in atelectasis (n = 18), tumor regression (n = 9), change in pleural effusion (n = 8) or other causes (n = 11). The ITPDs were calculated on both the initial planning CT and the re-CT and compared with a global gamma (γ) evaluation (criteria: 3%\3mm). A treatment fraction failed when the percentage of pixels failing in the radiation fields exceeded 10%. Dose-volume histograms (DVHs) were compared between the initial plan versus the plan re-calculated on the re-CT. RESULTS: The ITPD threshold method detected 76% of the changes in atelectasis, while only 50% of the tumor regression cases and 42% of the pleural effusion cases were detected. Only 10% of the cases adapted for other reasons were detected with ITPD. The method has a 17% false-positive rate. No significant correlations were found between changes in DVH metrics and γ fail-rates. CONCLUSIONS: This study showed that most cases with geometric changes caused by atelectasis could be captured by ITPD, however for other causes ITPD is not sensitive enough to detect the clinically relevant changes and no predictive power of ITPD was found.


Assuntos
Neoplasias Pulmonares/radioterapia , Radiometria/métodos , Radioterapia de Intensidade Modulada/métodos , Idoso , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/radioterapia , Tomografia Computadorizada de Feixe Cônico , Feminino , Humanos , Imageamento Tridimensional , Neoplasias Pulmonares/diagnóstico por imagem , Masculino , Derrame Pleural Maligno/diagnóstico por imagem , Atelectasia Pulmonar/diagnóstico por imagem , Radioterapia Guiada por Imagem , Estudos Retrospectivos , Carcinoma de Pequenas Células do Pulmão/diagnóstico por imagem , Carcinoma de Pequenas Células do Pulmão/radioterapia
10.
Acta Oncol ; 54(9): 1289-300, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26395528

RESUMO

BACKGROUND: Trials are vital in informing routine clinical care; however, current designs have major deficiencies. An overview of the various challenges that face modern clinical research and the methods that can be exploited to solve these challenges, in the context of personalised cancer treatment in the 21st century is provided. AIM: The purpose of this manuscript, without intending to be comprehensive, is to spark thought whilst presenting and discussing two important and complementary alternatives to traditional evidence-based medicine, specifically rapid learning health care and cohort multiple randomised controlled trial design. Rapid learning health care is an approach that proposes to extract and apply knowledge from routine clinical care data rather than exclusively depending on clinical trial evidence, (please watch the animation: http://youtu.be/ZDJFOxpwqEA). The cohort multiple randomised controlled trial design is a pragmatic method which has been proposed to help overcome the weaknesses of conventional randomised trials, taking advantage of the standardised follow-up approaches more and more used in routine patient care. This approach is particularly useful when the new intervention is a priori attractive for the patient (i.e. proton therapy, patient decision aids or expensive medications), when the outcomes are easily collected, and when there is no need of a placebo arm. DISCUSSION: Truly personalised cancer treatment is the goal in modern radiotherapy. However, personalised cancer treatment is also an immense challenge. The vast variety of both cancer patients and treatment options makes it extremely difficult to determine which decisions are optimal for the individual patient. Nevertheless, rapid learning health care and cohort multiple randomised controlled trial design are two approaches (among others) that can help meet this challenge.


Assuntos
Medicina Baseada em Evidências/métodos , Neoplasias/radioterapia , Medicina de Precisão/métodos , Ensaios Clínicos Controlados Aleatórios como Assunto , Humanos
11.
Mol Imaging ; 132014.
Artigo em Inglês | MEDLINE | ID: mdl-25743108

RESUMO

Small animal models are crucial to link molecular discoveries and implementation of clinically relevant therapeutics in oncology. Using these models requires noninvasive imaging techniques to monitor disease progression and therapy response. Micro-computed tomography (CT) is less studied for the in vivo monitoring of murine intracranial tumors and traditionally suffers from poor soft tissue contrast, whereas bioluminescence imaging (BLI) is known for its sensitivity but is not frequently employed for quantifying tumor volume. A widely used orthotopic glioblastoma multiforme (GBM) tumor model was applied in nude mice, and tumor growth was evaluated by BLI and contrast-enhanced microCT imaging. A strong correlation was observed between CT volume and BLI-integrated intensity (Pearson coefficient (r)  =  .85, p  =  .0002). Repeated contouring of contrast-enhanced microCT-delineated tumor volumes achieved an intraobserver average pairwise overlap ratio of 0.84 and an average tumor volume coefficient of variance of 0.11. MicroCT-delineated tumor size was found to correlate with tumor size obtained via histologic analysis (Pearson coefficient (r)  =  .88, p  =  .005). We conclude that BLI intensity can be used to derive tumor volume but that the use of both contrast-enhanced microCT and BLI provides complementary tumor growth information, which is particularly useful for modern small animal irradiation devices that make use of microCT and BLI for treatment planning, targeting, and monitoring.


Assuntos
Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Luciferases/metabolismo , Medições Luminescentes/métodos , Tomografia Computadorizada por Raios X/métodos , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Linhagem Celular Tumoral , Glioblastoma/diagnóstico por imagem , Luciferases/genética , Camundongos , Camundongos SCID , Imagem Multimodal , Transplante de Neoplasias , Carga Tumoral
12.
Phys Med Biol ; 69(3)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38091615

RESUMO

Objective. Deep learning models, such as convolutional neural networks (CNNs), can take full dose comparison images as input and have shown promising results for error identification during treatment. Clinically, complex scenarios should be considered, with the risk of multiple anatomical and/or mechanical errors occurring simultaneously during treatment. The purpose of this study was to evaluate the capability of CNN-based error identification in this more complex scenario.Approach. For 40 lung cancer patients, clinically realistic ranges of combinations of various treatment errors within treatment plans and/or computed tomography (CT) images were simulated. Modified CT images and treatment plans were used to predict 2580 3D dose distributions, which were compared to dose distributions without errors using various gamma analysis criteria and relative dose difference as dose comparison methods. A 3D CNN capable of multilabel classification was trained to identify treatment errors at two classification levels, using dose comparison volumes as input: Level 1 (main error type, e.g. anatomical change, mechanical error) and Level 2 (error subtype, e.g. tumor regression, patient rotation). For training the CNNs, a transfer learning approach was employed. An ensemble model was also evaluated, which consisted of three separate CNNs each taking a region of interest of the dose comparison volume as input. Model performance was evaluated by calculating sample F1-scores for training and validation sets.Main results. The model had high F1-scores for Level 1 classification, but performance for Level 2 was lower, and overfitting became more apparent. Using relative dose difference instead of gamma volumes as input improved performance for Level 2 classification, whereas using an ensemble model additionally reduced overfitting. The models obtained F1-scores of 0.86 and 0.62 on an independent test set for Level 1 and Level 2, respectively.Significance. This study shows that it is possible to identify multiple errors occurring simultaneously in 3D dose verification data.


Assuntos
Redes Neurais de Computação , Radioterapia de Intensidade Modulada , Humanos , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador/métodos , Aprendizado de Máquina
13.
Phys Med Biol ; 69(9)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38518380

RESUMO

Objective. Accuracy and reproducibility in the measurement of radiation dose and associated reporting are critically important for the validity of basic and preclinical radiobiological studies performed with kilovolt x-ray radiation cabinets. This is essential to enable results of radiobiological studies to be repeated, as well as enable valid comparisons between laboratories. In addition, the commonly used single point dose value hides the 3D dose heterogeneity across the irradiated sample. This is particularly true for preclinical rodent models, and is generally difficult to measure directly. Radiation transport simulations integrated in an easy to use application could help researchers improve quality of dosimetry and reporting.Approach. This paper describes the use and dosimetric validation of a newly-developed Monte Carlo (MC) tool, SmART-RAD, to simulate the x-ray field in a range of standard commercial x-ray cabinet irradiators used for preclinical irradiations. Comparisons are made between simulated and experimentally determined dose distributions for a range of configurations to assess the potential use of this tool in determining dose distributions through samples, based on more readily available air-kerma calibration point measurements.Main results. Simulations gave very good dosimetric agreement with measured depth dose distributions in phantoms containing both water and bone equivalent materials. Good spatial and dosimetric agreement between simulated and measured dose distributions was obtained when using beam-shaping shielding.Significance. The MC simulations provided by SmART-RAD provide a useful tool to go from a limited number of dosimetry measurements to detailed 3D dose distributions through a non-homogeneous irradiated sample. This is particularly important when trying to determine the dose distribution in more complex geometries. The use of such a tool can improve reproducibility and dosimetry reporting in preclinical radiobiological research.


Assuntos
Radiobiologia , Radiometria , Raios X , Reprodutibilidade dos Testes , Radiometria/métodos , Imagens de Fantasmas , Método de Monte Carlo
14.
Phys Imaging Radiat Oncol ; 29: 100566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38487622

RESUMO

Background and purpose: Dose calculation on cone-beam computed tomography (CBCT) images has been less accurate than on computed tomography (CT) images due to lower image quality and discrepancies in CT numbers for CBCT. As increasing interest arises in offline and online re-planning, dose calculation accuracy was evaluated for a novel CBCT imager integrated into a ring gantry treatment machine. Materials and methods: The new CBCT system allowed fast image acquisition (5.9 s) by using new hardware, including a large-size flat panel detector, and incorporated image-processing algorithms with iterative reconstruction techniques, leading to accurate CT numbers allowing dose calculation. In this study, CBCT- and CT-based dose calculations were compared based on three anthropomorphic phantoms, after CBCT-to-mass-density calibration was performed. Six plans were created on the CT scans covering various target locations and complexities, followed by CBCT to CT registrations, copying of contours, and re-calculation of the plans on the CBCT scans. Dose-volume histogram metrics for target volumes and organs-at-risk (OARs) were evaluated, and global gamma analyses were performed. Results: Target coverage differences were consistently below 1.2 %, demonstrating the agreement between CT and re-calculated CBCT dose distributions. Differences in Dmean for OARs were below 0.5 Gy for all plans, except for three OARs, which were below 0.8 Gy (<1.1 %). All plans had a 3 %/1mm gamma pass rate > 97 %. Conclusions: This study demonstrated comparable results between dose calculations performed on CBCT and CT acquisitions. The new CBCT system with enhanced image quality and CT number accuracy opens possibilities for off-line and on-line re-planning.

15.
Phys Med Biol ; 69(10)2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38593826

RESUMO

Objective. Newer cone-beam computed tomography (CBCT) imaging systems offer reconstruction algorithms including metal artifact reduction (MAR) and extended field-of-view (eFoV) techniques to improve image quality. In this study a new CBCT imager, the new Varian HyperSight CBCT, is compared to fan-beam CT and two CBCT imagers installed in a ring-gantry and C-arm linear accelerator, respectively.Approach. The image quality was assessed for HyperSight CBCT which uses new hardware, including a large-size flat panel detector, and improved image reconstruction algorithms. The decrease of metal artifacts was quantified (structural similarity index measure (SSIM) and root-mean-squared error (RMSE)) when applying MAR reconstruction and iterative reconstruction for a dental and spine region using a head-and-neck phantom. The geometry and CT number accuracy of the eFoV reconstruction was evaluated outside the standard field-of-view (sFoV) on a large 3D-printed chest phantom. Phantom size dependency of CT numbers was evaluated on three cylindrical phantoms of increasing diameter. Signal-to-noise and contrast-to-noise were quantified on an abdominal phantom.Main results. In phantoms with streak artifacts, MAR showed comparable results for HyperSight CBCT and CT, with MAR increasing the SSIM (0.97-0.99) and decreasing the RMSE (62-55 HU) compared to iterative reconstruction without MAR. In addition, HyperSight CBCT showed better geometrical accuracy in the eFoV than CT (Jaccard Conformity Index increase of 0.02-0.03). However, the CT number accuracy outside the sFoV was lower than for CT. The maximum CT number variation between different phantom sizes was lower for the HyperSight CBCT imager (∼100 HU) compared to the two other CBCT imagers (∼200 HU), but not fully comparable to CT (∼50 HU).Significance. This study demonstrated the imaging performance of the new HyperSight CBCT imager and the potential of applying this CBCT system in more advanced scenarios by comparing the quality against fan-beam CT.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Imagens de Fantasmas , Tomografia Computadorizada de Feixe Cônico/instrumentação , Tomografia Computadorizada de Feixe Cônico/métodos , Processamento de Imagem Assistida por Computador/métodos , Humanos , Artefatos , Controle de Qualidade
16.
Phys Med Biol ; 69(13)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38870948

RESUMO

Objective.High-dose-rate (HDR) brachytherapy lacks routinely available treatment verification methods. Real-time tracking of the radiation source during HDR brachytherapy can enhance treatment verification capabilities. Recent developments in source tracking allow for measurement of dwell times and source positions with high accuracy. However, more clinically relevant information, such as dose discrepancies, is still needed. To address this, a real-time dose calculation implementation was developed to provide more relevant information from source tracking data. A proof-of-principle of the developed tool was shown using source tracking data obtained from a 3D-printed anthropomorphic phantom.Approach.Software was developed to calculate dose-volume-histograms (DVH) and clinical dose metrics from experimental HDR prostate treatment source tracking data, measured in a realistic pelvic phantom. Uncertainty estimation was performed using repeat measurements to assess the inherent dose measuring uncertainty of thein vivodosimetry (IVD) system. Using a novel approach, the measurement uncertainty can be incorporated in the dose calculation, and used for evaluation of cumulative dose and clinical dose-volume metrics after every dwell position, enabling real-time treatment verification.Main results.The dose calculated from source tracking measurements aligned with the generated uncertainty bands, validating the approach. Simulated shifts of 3 mm in 5/17 needles in a single plan caused DVH deviations beyond the uncertainty bands, indicating errors occurred during treatment. Clinical dose-volume metrics could be monitored in a time-resolved approach, enabling early detection of treatment plan deviations and prediction of their impact on the final dose that will be delivered in real-time.Significance.Integrating dose calculation with source tracking enhances the clinical relevance of IVD methods. Phantom measurements show that the developed tool aids in tracking treatment progress, detecting errors in real-time and post-treatment evaluation. In addition, it could be used to define patient-specific action limits and error thresholds, while taking the uncertainty of the measurement system into consideration.


Assuntos
Braquiterapia , Imagens de Fantasmas , Doses de Radiação , Dosagem Radioterapêutica , Braquiterapia/métodos , Braquiterapia/instrumentação , Incerteza , Humanos , Fatores de Tempo , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Próstata/radioterapia , Estudo de Prova de Conceito , Masculino
17.
Artigo em Inglês | MEDLINE | ID: mdl-38965830

RESUMO

BACKGROUND: Cachexia, a syndrome with high prevalence in non-small cell lung cancer patients, impairs quality of life and reduces tolerance and responsiveness to cancer therapy resulting in decreased survival. Optimal nutritional care is pivotal in the treatment of cachexia and a recommended cornerstone of multimodal therapy. Here, we investigated the therapeutic effect of an intervention diet consisting of a specific combination of high protein, leucine, fish oil, vitamin D, galacto-oligosaccharides, and fructo-oligosaccharides on the development and progression of cachexia in an orthotopic lung cancer mouse model. METHODS: Eleven-week-old male 129S2/Sv mice were orthotopically implanted with 344P lung epithelial tumour cells or vehicle (control). Seven days post-implantation tumour-bearing (TB) mice were allocated to either intervention- or isocaloric control diet. Cachexia was defined as 5 days of consecutive body weight loss, after which mice were euthanized for tissue analyses. RESULTS: TB mice developed cachexia accompanied by significant loss of skeletal muscle mass and epididymal fat mass compared with sham operated mice. The cachectic endpoint was significantly delayed (46.0 ± 15.2 vs. 34.7 ± 11.4 days), and the amount (-1.57 ± 0.62 vs. -2.13 ± 0.57 g) and progression (-0.26 ± 0.14 vs. -0.39 ± 0.11 g/day) of body weight loss were significantly reduced by the intervention compared with control diet. Moreover, systemic inflammation (pentraxin-2 plasma levels) and alterations in molecular markers for proteolysis and protein synthesis, indicative of muscle atrophy signalling in TB-mice, were suppressed in skeletal muscle by the intervention diet. CONCLUSIONS: Together, these data demonstrate the potential of this multinutrient intervention, targeting multiple components of cachexia, as integral part of lung cancer management.

18.
Brachytherapy ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38969605

RESUMO

PURPOSE: This study aimed to develop and validate a Monte Carlo (MC) model for the Papillon+ contact x-ray brachytherapy (CXB) device, producing 50 kilovolt (kV) X-rays, specifically focusing on its application with a 25 mm diameter rectal applicator for contact therapy. MATERIAL AND METHODS: The validation process involved depth dose and transverse dose profile measurements using EBT3 gafchromic films positioned in a plastic water low energy range phantom. The half-value layer (HVL) was further measured and derived from the simulated X-ray spectra. RESULTS: Excellent agreement within ±2% was achieved between the measured and simulated on-axis depth dose curves for the 25 mm rectal applicator. Transverse dose profile measurements showed a high level of agreement between the simulation and measurements, on average 3.1% in contact with the applicator at the surface of the phantom and on average 1.7% at 10 mm depth. A close agreement within 5.5% was noticed concerning the HVL between the measurement and simulation. The simulated gamma spectra and 2D-dose distribution demonstrated a soft X-ray energy spectrum and a uniform dose distribution in contact with the applicator. CONCLUSIONS: An MC model was successfully developed for the Papillon+ eBT device with a 25 mm diameter rectal applicator. The validated model, with its demonstrated accuracy in depth dose and transverse dose profile simulations, is a valuable tool for quality assurance and patient safety and, in a later phase, may be used for treatment planning, dose calculations and tissue inhomogeneity corrections.

19.
Acta Oncol ; 52(7): 1484-9, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24000957

RESUMO

UNLABELLED: Atelectasis in lung cancer patients can change rapidly during a treatment course, which may displace the tumor/healthy tissues, or change tissue densities locally. This may result in differences between the planned and the actually delivered dose. With complex delivery techniques treatment verification is essential and inter-fractional adaptation may be necessary. We present the first clinical results of treatment adaptation based on an in-house developed three-dimensional (3D) portal dose measurement (PDM) system. MATERIAL AND METHODS: A method was developed for 3D PDM combined with cone beam computed tomography (kV-CBCT) imaging. Lung cancer patients are monitored routinely with this imaging technique. During treatment, the first three fractions are analyzed with 3D PDM and weekly thereafter. The reconstructed measured dose is compared to the planned dose using dose-volume histograms and a γ evaluation. Patients having |γ|> 1 in more than 5% of the (primary tumor or organ at risk) volume were subjected to further analysis. In this study we show the PDM dose changes for five patients. RESULTS: We detected relevant dose changes induced by changes in atelectasis in the presented cases. Two patients received two treatment adaptations after being detected with PDM confirmed by visual inspection of the kV-CBCTs, and in two other patients the radiation treatment plan was adapted once. In one case no dose delivery change was detected with PDM. CONCLUSION: The first clinical patients show that 3D PDM combined with kV-CBCT is a valuable quality assurance tool for detecting anatomical alterations and their dosimetric consequences during the course of radiotherapy. In our clinic, 3D PDM is fully automated for ease and speed of the procedure, and for minimization of human error. The technique is able to flag patients with suspected dose discrepancies for potential adaptation of the treatment plan.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Processamento de Imagem Assistida por Computador , Neoplasias Pulmonares/radioterapia , Atelectasia Pulmonar/radioterapia , Radiometria , Radioterapia Guiada por Imagem , Radioterapia de Intensidade Modulada/efeitos adversos , Algoritmos , Humanos , Imageamento Tridimensional , Prognóstico , Atelectasia Pulmonar/etiologia , Intensificação de Imagem Radiográfica
20.
Phys Med Biol ; 68(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36584391

RESUMO

Objective. There is a continuous increase in 3D printing applications in several fields including medical imaging and radiotherapy. Although there are numerous advantages of using 3D printing for the development of customized phantoms, bolus, quality assurance devices and other clinical applications, material properties are not well known and printer settings can affect considerably the properties (e.g. density, isotropy and homogeneity) of the printed parts. This study aims to evaluate several materials and printer properties to identify a range of tissue-mimicking materials.Approach. Dual-energy CT was used to obtain the effective atomic number (Zeff) and relative electron density (RED) for thirty-one different materials including different colours of the same filament from the same manufacturer and the same type of filament from different manufacturers. In addition, a custom bone equivalent filament was developed and evaluated since a high-density filament with a composition similar to bone is not commercially available. Printing settings such as infill density, infill pattern, layer height and nozzle size were also evaluated.Main results. Large differences were observed for HU (288), RED (>10%) andZeff(>50%) for different colours of the same filament due to the colour pigment. Results show a wide HU variation (-714 to 1104), RED (0.277 to 1.480) andZeff(5.22 to 12.39) between the printed samples with some materials being comparable to commercial tissue-mimicking materials and good substitutes to a range of materials from lung to bone. Printer settings can result in directional dependency and significantly affect the homogeneity of the samples.Significance. The use of DECT to extract RED, andZeffallows for quantitative imaging and dosimetry using 3D printed materials equivalent to certified tissue-mimicking tissues.


Assuntos
Radioterapia (Especialidade) , Radiometria , Radiografia , Imagens de Fantasmas , Impressão Tridimensional , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa