Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Conserv Biol ; 31(4): 781-788, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-27943401

RESUMO

The field of biodiversity conservation has recently been criticized as relying on a fixist view of the living world in which existing species constitute at the same time targets of conservation efforts and static states of reference, which is in apparent disagreement with evolutionary dynamics. We reviewed the prominent role of species as conservation units and the common benchmark approach to conservation that aims to use past biodiversity as a reference to conserve current biodiversity. We found that the species approach is justified by the discrepancy between the time scales of macroevolution and human influence and that biodiversity benchmarks are based on reference processes rather than fixed reference states. Overall, we argue that the ethical and theoretical frameworks underlying conservation research are based on macroevolutionary processes, such as extinction dynamics. Current species, phylogenetic, community, and functional conservation approaches constitute short-term responses to short-term human effects on these reference processes, and these approaches are consistent with evolutionary principles.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Evolução Biológica , Humanos , Filogenia
2.
Nat Commun ; 12(1): 3694, 2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34140481

RESUMO

Various prioritisation strategies have been developed to cope with accelerating biodiversity loss and limited conservation resources. These strategies could become more engaging for decision-makers if they reflected the positive effects conservation can have on future projected biodiversity, by targeting net positive outcomes in future projected biodiversity, rather than reflecting the negative consequences of further biodiversity losses only. Hoping to inform the post-2020 biodiversity framework, we here apply this approach of targeting net positive outcomes in future projected biodiversity to phylogenetic diversity (PD) to re-identify species and areas of interest for conserving global mammalian PD. We identify priority species/areas as those whose protection would maximise gains in future projected PD. We also identify loss-significant species/areas as those whose/where extinction(s) would maximise losses in future projected PD. We show that our priority species/areas differ from loss-significant species/areas. While our priority species are mostly similar to those identified by the EDGE of Existence Programme, our priority areas generally differ from previously-identified ones for global mammal conservation. We further highlight that these newly-identified species/areas of interest currently lack protection and offer some guidance for their future management.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais/métodos , Ecologia/métodos , Espécies em Perigo de Extinção , África Austral , Animais , Ásia Central , Sudeste Asiático , Evolução Biológica , Espécies em Perigo de Extinção/estatística & dados numéricos , Extinção Biológica , Madagáscar , Mamíferos , Filogenia
3.
Sci Rep ; 9(1): 11693, 2019 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-31406123

RESUMO

Islands have remarkable levels of endemism and contribute greatly to global biodiversity. Establishing the age of island endemics is important to gain insights into the processes that have shaped the biodiversity patterns of island biota. We investigated the relative age of monocots across islands worldwide, using different measures of phylogenetic endemism tested against null models. We compiled a species occurrence dataset across 4,306 islands, and identified 142 sites with neo-, paleo-, mixed and super-endemism. These sites were distributed across the world, although they tended to be more common at low latitudes. The most frequent types of endemism were mixed and super-endemism, which suggests that present-day island biodiversity has frequently been shaped by processes that took place at different points in times. We also identified the environmental factors that contributed most to different types of endemism; we found that latitude, habitat availability and climate stability had a significant impact on the persistence of ancient taxa and on recent diversification events. The islands identified here are irreplaceable both for the uniqueness and the evolutionary history of their flora, and because they are a source of "option values" and evolutionary potential. Therefore, our findings will help guide biodiversity conservation on a global scale.


Assuntos
Evolução Biológica , Magnoliopsida/fisiologia , Filogenia , Dispersão Vegetal/fisiologia , Biodiversidade , Clima , Conservação dos Recursos Naturais/métodos , Ecossistema , Humanos , Ilhas , Magnoliopsida/anatomia & histologia , Magnoliopsida/classificação , Fatores de Tempo
4.
Sci Rep ; 9(1): 14471, 2019 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-31597935

RESUMO

Island systems are among the most vulnerable to climate change, which is predicted to induce shifts in temperature, rainfall and/or sea levels. Our aim was: (i) to map the relative vulnerability of islands to each of these threats from climate change on a worldwide scale; (ii) to estimate how island vulnerability would impact phylogenetic diversity. We focused on monocotyledons, a major group of flowering plants that includes taxa of important economic value such as palms, grasses, bananas, taro. Islands that were vulnerable to climate change were found at all latitudes, e.g. in Australia, Indonesia, the Caribbean, Pacific countries, the United States, although they were more common near the equator. The loss of highly vulnerable islands would lead to relatively low absolute loss of plant phylogenetic diversity. However, these losses tended to be higher than expected by chance alone even in some highly vulnerable insular systems. This suggests the possible collapse of deep and long branches in vulnerable islands. Measuring the vulnerability of each island is a first step towards a risk analysis to identify where the impacts of climate change are the most likely and what may be their consequences on biodiversity.


Assuntos
Biodiversidade , Mudança Climática , Ilhas , Magnoliopsida/classificação , Filogenia
5.
Biol Rev Camb Philos Soc ; 92(1): 271-291, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26467982

RESUMO

The Earth's evolutionary history is threatened by species loss in the current sixth mass extinction event in Earth's history. Such extinction events not only eliminate species but also their unique evolutionary histories. Here we review the expected loss of Earth's evolutionary history quantified by phylogenetic diversity (PD) and evolutionary distinctiveness (ED) at risk. Due to the general paucity of data, global evolutionary history losses have been predicted for only a few groups, such as mammals, birds, amphibians, plants, corals and fishes. Among these groups, there is now empirical support that extinction threats are clustered on the phylogeny; however this is not always a sufficient condition to cause higher loss of phylogenetic diversity in comparison to a scenario of random extinctions. Extinctions of the most evolutionarily distinct species and the shape of phylogenetic trees are additional factors that can elevate losses of evolutionary history. Consequently, impacts of species extinctions differ among groups and regions, and even if global losses are low within large groups, losses can be high among subgroups or within some regions. Further, we show that PD and ED are poorly protected by current conservation practices. While evolutionary history can be indirectly protected by current conservation schemes, optimizing its preservation requires integrating phylogenetic indices with those that capture rarity and extinction risk. Measures based on PD and ED could bring solutions to conservation issues, however they are still rarely used in practice, probably because the reasons to protect evolutionary history are not clear for practitioners or due to a lack of data. However, important advances have been made in the availability of phylogenetic trees and methods for their construction, as well as assessments of extinction risk. Some challenges remain, and looking forward, research should prioritize the assessment of expected PD and ED loss for more taxonomic groups and test the assumption that preserving ED and PD also protects rare species and ecosystem services. Such research will be useful to inform and guide the conservation of Earth's biodiversity and the services it provides.


Assuntos
Biodiversidade , Evolução Biológica , Conservação dos Recursos Naturais , Animais , Extinção Biológica , Filogenia
6.
Ecol Evol ; 6(23): 8502-8514, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-28031802

RESUMO

There is an increasing interest in measuring loss of phylogenetic diversity and evolutionary distinctiveness which together depict the evolutionary history of conservation interest. Those losses are assessed through the evolutionary relationships between species and species threat status or extinction probabilities. Yet, available information is not always sufficient to quantify the threat status of species that are then classified as data deficient. Data-deficient species are a crucial issue as they cause incomplete assessments of the loss of phylogenetic diversity and evolutionary distinctiveness. We aimed to explore the potential bias caused by data-deficient species in estimating four widely used indices: HEDGE, EDGE, PDloss, and Expected PDloss. Second, we tested four different widely applicable and multitaxa imputation methods and their potential to minimize the bias for those four indices. Two methods are based on a best- vs. worst-case extinction scenarios, one is based on the frequency distribution of threat status within a taxonomic group and one is based on correlates of extinction risks. We showed that data-deficient species led to important bias in predictions of evolutionary history loss (especially high underestimation when they were removed). This issue was particularly important when data-deficient species tended to be clustered in the tree of life. The imputation method based on correlates of extinction risks, especially geographic range size, had the best performance and enabled us to improve risk assessments. Solving threat status of DD species can fundamentally change our understanding of loss of phylogenetic diversity. We found that this loss could be substantially higher than previously found in amphibians, squamate reptiles, and carnivores. We also identified species that are of high priority for the conservation of evolutionary distinctiveness.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa