Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Behav Res Methods ; 53(4): 1648-1668, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33420716

RESUMO

Principal covariates regression (PCovR) allows one to deal with the interpretational and technical problems associated with running ordinary regression using many predictor variables. In PCovR, the predictor variables are reduced to a limited number of components, and simultaneously, criterion variables are regressed on these components. By means of a weighting parameter, users can flexibly choose how much they want to emphasize reconstruction and prediction. However, when datasets contain many criterion variables, PCovR users face new interpretational problems, because many regression weights will be obtained and because some criteria might be unrelated to the predictors. We therefore propose PCovR2, which extends PCovR by also reducing the criteria to a few components. These criterion components are predicted based on the predictor components. The PCovR2 weighting parameter can again be flexibly used to focus on the reconstruction of the predictors and criteria, or on filtering out relevant predictor components and predictable criterion components. We compare PCovR2 to two other approaches, based on partial least squares (PLS) and principal components regression (PCR), that also reduce the criteria and are therefore called PLS2 and PCR2. By means of a simulated example, we show that PCovR2 outperforms PLS2 and PCR2 when one aims to recover all relevant predictor components and predictable criterion components. Moreover, we conduct a simulation study to evaluate how well PCovR2, PLS2 and PCR2 succeed in finding (1) all underlying components and (2) the subset of relevant predictor and predictable criterion components. Finally, we illustrate the use of PCovR2 by means of empirical data.


Assuntos
Análise dos Mínimos Quadrados , Simulação por Computador , Humanos
2.
Behav Res Methods ; 50(4): 1430-1445, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29435914

RESUMO

Behavioral researchers often linearly regress a criterion on multiple predictors, aiming to gain insight into the relations between the criterion and predictors. Obtaining this insight from the ordinary least squares (OLS) regression solution may be troublesome, because OLS regression weights show only the effect of a predictor on top of the effects of other predictors. Moreover, when the number of predictors grows larger, it becomes likely that the predictors will be highly collinear, which makes the regression weights' estimates unstable (i.e., the "bouncing beta" problem). Among other procedures, dimension-reduction-based methods have been proposed for dealing with these problems. These methods yield insight into the data by reducing the predictors to a smaller number of summarizing variables and regressing the criterion on these summarizing variables. Two promising methods are principal-covariate regression (PCovR) and exploratory structural equation modeling (ESEM). Both simultaneously optimize reduction and prediction, but they are based on different frameworks. The resulting solutions have not yet been compared; it is thus unclear what the strengths and weaknesses are of both methods. In this article, we focus on the extents to which PCovR and ESEM are able to extract the factors that truly underlie the predictor scores and can predict a single criterion. The results of two simulation studies showed that for a typical behavioral dataset, ESEM (using the BIC for model selection) in this regard is successful more often than PCovR. Yet, in 93% of the datasets PCovR performed equally well, and in the case of 48 predictors, 100 observations, and large differences in the strengths of the factors, PCovR even outperformed ESEM.


Assuntos
Escala de Avaliação Comportamental , Análise de Classes Latentes , Análise de Componente Principal/métodos , Pesquisa Comportamental/métodos , Pesquisa Comportamental/estatística & dados numéricos , Humanos , Armazenamento e Recuperação da Informação/métodos , Armazenamento e Recuperação da Informação/estatística & dados numéricos , Análise dos Mínimos Quadrados
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa