Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 593(7860): 597-601, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33902106

RESUMO

N6-methyladenosine (m6A) is an abundant internal RNA modification1,2 that is catalysed predominantly by the METTL3-METTL14 methyltransferase complex3,4. The m6A methyltransferase METTL3 has been linked to the initiation and maintenance of acute myeloid leukaemia (AML), but the potential of therapeutic applications targeting this enzyme remains unknown5-7. Here we present the identification and characterization of STM2457, a highly potent and selective first-in-class catalytic inhibitor of METTL3, and a crystal structure of STM2457 in complex with METTL3-METTL14. Treatment of tumours with STM2457 leads to reduced AML growth and an increase in differentiation and apoptosis. These cellular effects are accompanied by selective reduction of m6A levels on known leukaemogenic mRNAs and a decrease in their expression consistent with a translational defect. We demonstrate that pharmacological inhibition of METTL3 in vivo leads to impaired engraftment and prolonged survival in various mouse models of AML, specifically targeting key stem cell subpopulations of AML. Collectively, these results reveal the inhibition of METTL3 as a potential therapeutic strategy against AML, and provide proof of concept that the targeting of RNA-modifying enzymes represents a promising avenue for anticancer therapy.


Assuntos
Antineoplásicos/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Metiltransferases/antagonistas & inibidores , Adenosina/análogos & derivados , Animais , Apoptose , Diferenciação Celular , Linhagem Celular Tumoral , Feminino , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Blood ; 141(9): 1023-1035, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35981498

RESUMO

Fms-like tyrosine kinase 3 (FLT3) is often overexpressed or constitutively activated by internal tandem duplication (ITD) and tyrosine kinase domain (TKD) mutations in acute myeloid leukemia (AML). Despite the use of receptor tyrosine kinase inhibitors (TKI) in FLT3-ITD-positive AML, the prognosis of patients is still poor, and further improvement of therapy is required. Targeting FLT3 independent of mutations by antibody-drug conjugates (ADCs) is a promising strategy for AML therapy. Here, we report the development and preclinical characterization of a novel FLT3-targeting ADC, 20D9-ADC, which was generated by applying the innovative P5 conjugation technology. In vitro, 20D9-ADC mediated potent cytotoxicity to Ba/F3 cells expressing transgenic FLT3 or FLT3-ITD, to AML cell lines, and to FLT3-ITD-positive patient-derived xenograft AML cells. In vivo, 20D9-ADC treatment led to a significant tumor reduction and even durable complete remission in AML xenograft models. Furthermore, 20D9-ADC demonstrated no severe hematotoxicity in in vitro colony formation assays using concentrations that were cytotoxic in AML cell line treatment. The combination of 20D9-ADC with the TKI midostaurin showed strong synergy in vitro and in vivo, leading to reduction of aggressive AML cells below the detection limit. Our data indicate that targeting FLT3 with an advanced new-generation ADC is a promising and potent antileukemic strategy, especially when combined with FLT3-TKI in FLT3-ITD-positive AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Tirosina Quinase 3 Semelhante a fms/genética , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Mutação
3.
Blood ; 140(10): 1104-1118, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35878001

RESUMO

T-cell-recruiting bispecific molecule therapy has yielded promising results in patients with hematologic malignancies; however, resistance and subsequent relapse remains a major challenge. T-cell exhaustion induced by persistent antigen stimulation or tonic receptor signaling has been reported to compromise outcomes of T-cell-based immunotherapies. The impact of continuous exposure to bispecifics on T-cell function, however, remains poorly understood. In relapsed/refractory B-cell precursor acute lymphoblastic leukemia patients, 28-day continuous infusion with the CD19xCD3 bispecific molecule blinatumomab led to declining T-cell function. In an in vitro model system, mimicking 28-day continuous infusion with the half-life-extended CD19xCD3 bispecific AMG 562, we identified hallmark features of exhaustion arising over time. Continuous AMG 562 exposure induced progressive loss of T-cell function (day 7 vs day 28 mean specific lysis: 88.4% vs 8.6%; n = 6; P = .0003). Treatment-free intervals (TFIs), achieved by AMG 562 withdrawal, were identified as a powerful strategy for counteracting exhaustion. TFIs induced strong functional reinvigoration of T cells (continuous vs TFI-specific lysis on day 14: 34.9% vs 93.4%; n = 6; P < .0001) and transcriptional reprogramming. Furthermore, use of a TFI led to improved T-cell expansion and tumor control in vivo. Our data demonstrate the relevance of T-cell exhaustion in bispecific antibody therapy and highlight that T cells can be functionally and transcriptionally rejuvenated with TFIs. In view of the growing number of bispecific molecules being evaluated in clinical trials, our findings emphasize the need to consider and evaluate TFIs in application schedules to improve clinical outcomes.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Anticorpos Biespecíficos/farmacologia , Anticorpos Biespecíficos/uso terapêutico , Antígenos CD19 , Antineoplásicos/uso terapêutico , Humanos , Imunoterapia/métodos , Linfoma de Células B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Linfócitos T
4.
Blood ; 140(24): 2594-2610, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857899

RESUMO

BCL-2 inhibition has been shown to be effective in acute myeloid leukemia (AML) in combination with hypomethylating agents or low-dose cytarabine. However, resistance and relapse represent major clinical challenges. Therefore, there is an unmet need to overcome resistance to current venetoclax-based strategies. We performed high-throughput drug screening to identify effective combination partners for venetoclax in AML. Overall, 64 antileukemic drugs were screened in 31 primary high-risk AML samples with or without venetoclax. Gilteritinib exhibited the highest synergy with venetoclax in FLT3 wild-type AML. The combination of gilteritinib and venetoclax increased apoptosis, reduced viability, and was active in venetoclax-azacitidine-resistant cell lines and primary patient samples. Proteomics revealed increased FLT3 wild-type signaling in specimens with low in vitro response to the currently used venetoclax-azacitidine combination. Mechanistically, venetoclax with gilteritinib decreased phosphorylation of ERK and GSK3B via combined AXL and FLT3 inhibition with subsequent suppression of the antiapoptotic protein MCL-1. MCL-1 downregulation was associated with increased MCL-1 phosphorylation of serine 159, decreased phosphorylation of threonine 161, and proteasomal degradation. Gilteritinib and venetoclax were active in an FLT3 wild-type AML patient-derived xenograft model with TP53 mutation and reduced leukemic burden in 4 patients with FLT3 wild-type AML receiving venetoclax-gilteritinib off label after developing refractory disease under venetoclax-azacitidine. In summary, our results suggest that combined inhibition of FLT3/AXL potentiates venetoclax response in FLT3 wild-type AML by inducing MCL-1 degradation. Therefore, the venetoclax-gilteritinib combination merits testing as a potentially active regimen in patients with high-risk FLT3 wild-type AML.


Assuntos
Leucemia Mieloide Aguda , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Azacitidina , Tirosina Quinase 3 Semelhante a fms/genética
5.
Mol Cancer ; 22(1): 107, 2023 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-37422628

RESUMO

BACKGROUND: Acute leukemias represent deadly malignancies that require better treatment. As a challenge, treatment is counteracted by a microenvironment protecting dormant leukemia stem cells. METHODS: To identify responsible surface proteins, we performed deep proteome profiling on minute numbers of dormant patient-derived xenograft (PDX) leukemia stem cells isolated from mice. Candidates were functionally screened by establishing a comprehensive CRISPR‒Cas9 pipeline in PDX models in vivo. RESULTS: A disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) was identified as an essential vulnerability required for the survival and growth of different types of acute leukemias in vivo, and reconstitution assays in PDX models confirmed the relevance of its sheddase activity. Of translational importance, molecular or pharmacological targeting of ADAM10 reduced PDX leukemia burden, cell homing to the murine bone marrow and stem cell frequency, and increased leukemia response to conventional chemotherapy in vivo. CONCLUSIONS: These findings identify ADAM10 as an attractive therapeutic target for the future treatment of acute leukemias.


Assuntos
Leucemia , Proteômica , Humanos , Camundongos , Animais , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Sistemas CRISPR-Cas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Leucemia/genética , Modelos Animais de Doenças , Microambiente Tumoral , Secretases da Proteína Precursora do Amiloide/genética , Secretases da Proteína Precursora do Amiloide/metabolismo
6.
Blood ; 138(25): 2655-2669, 2021 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-34280257

RESUMO

Antibody-based immunotherapy is a promising strategy for targeting chemoresistant leukemic cells. However, classical antibody-based approaches are restricted to targeting lineage-specific cell surface antigens. By targeting intracellular antigens, a large number of other leukemia-associated targets would become accessible. In this study, we evaluated a novel T-cell bispecific (TCB) antibody, generated by using CrossMAb and knob-into-holes technology, containing a bivalent T-cell receptor-like binding domain that recognizes the RMFPNAPYL peptide derived from the intracellular tumor antigen Wilms tumor protein (WT1) in the context of HLA-A*02. Binding to CD3ε recruits T cells irrespective of their T-cell receptor specificity. WT1-TCB elicited antibody-mediated T-cell cytotoxicity against AML cell lines in a WT1- and HLA-restricted manner. Specific lysis of primary acute myeloid leukemia (AML) cells was mediated in ex vivo long-term cocultures by using allogeneic (mean ± standard error of the mean [SEM] specific lysis, 67 ± 6% after 13-14 days; n = 18) or autologous, patient-derived T cells (mean ± SEM specific lysis, 54 ± 12% after 11-14 days; n = 8). WT1-TCB-treated T cells exhibited higher cytotoxicity against primary AML cells than an HLA-A*02 RMF-specific T-cell clone. Combining WT1-TCB with the immunomodulatory drug lenalidomide further enhanced antibody-mediated T-cell cytotoxicity against primary AML cells (mean ± SEM specific lysis on days 3-4, 45.4 ± 9.0% vs 70.8 ± 8.3%; P = .015; n = 9-10). In vivo, WT1-TCB-treated humanized mice bearing SKM-1 tumors exhibited a significant and dose-dependent reduction in tumor growth. In summary, we show that WT1-TCB facilitates potent in vitro, ex vivo, and in vivo killing of AML cell lines and primary AML cells; these results led to the initiation of a phase 1 trial in patients with relapsed/refractory AML (#NCT04580121).


Assuntos
Anticorpos Biespecíficos/uso terapêutico , Antineoplásicos Imunológicos/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Peptídeos/uso terapêutico , Proteínas WT1/imunologia , Animais , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Antígeno HLA-A2/imunologia , Humanos , Leucemia Mieloide Aguda/imunologia , Camundongos , Peptídeos/farmacologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T Citotóxicos/efeitos dos fármacos , Linfócitos T Citotóxicos/imunologia , Células Tumorais Cultivadas
7.
Blood ; 136(12): 1407-1418, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32483603

RESUMO

Anti-CD19 chimeric antigen receptor (CAR) T cells showed significant antileukemic activity in B-precursor acute lymphoblastic leukemia (ALL). Allogeneic, HLA-mismatched off-the-shelf third-party donors may offer ideal fitness of the effector cells, but carry the risk of graft-versus-host disease. Knockout (KO) of the endogenous T-cell receptor (TCR) in CD19-CAR-T cells may be a promising solution. Here, we induced a CRISPR/Cas9-mediated KO of the TCRß chain in combination with a second-generation retroviral CAR transduction including a 4-1BB costimulatory domain in primary T cells. This tandem engineering led to a highly functional population of TCR-KO-CAR-T cells with strong activation (CD25, interferon γ), proliferation, and specific killing upon CD19 target recognition. TCR-KO-CAR-T cells had a balanced phenotype of central memory and effector memory T cells. KO of the endogenous TCR in T cells strongly ablated alloreactivity in comparison with TCR-expressing T cells. In a patient-derived xenograft model of childhood ALL, TCR-KO-CAR-T cells clearly controlled CD19+ leukemia burden and improved survival in vivo. However, coexpression of endogenous TCR plus CAR led to superior persistence of T cells and significantly prolonged leukemia control in vivo, confirmed by a second in vivo model using the leukemia cell line NALM6. These results point toward an essential role of the endogenous TCR for longevity of the response at the price of alloreactivity. In conclusion, anti-CD19 CAR T cells with a CRISPR/Cas9-mediated TCR-KO are promising candidates for nonmatched third-party adoptive T-cell transfer with high antileukemic functionality in the absence of alloreactivity, but long-term persistence in vivo is better in the presence of the endogenous TCR.


Assuntos
Sistemas CRISPR-Cas , Imunoterapia Adotiva/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Receptores de Antígenos de Linfócitos T/imunologia , Animais , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Leucemia-Linfoma Linfoblástico de Células Precursoras/imunologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Receptores de Antígenos de Linfócitos T/genética , Transdução Genética , Células Tumorais Cultivadas
8.
Blood ; 134(3): 263-276, 2019 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-31076446

RESUMO

FLT3, DNMT3A, and NPM1 are the most frequently mutated genes in cytogenetically normal acute myeloid leukemia (AML), but little is known about how these mutations synergize upon cooccurrence. Here we show that triple-mutated AML is characterized by high leukemia stem cell (LSC) frequency, an aberrant leukemia-specific GPR56 highCD34low immunophenotype, and synergistic upregulation of Hepatic Leukemia Factor (HLF). Cell sorting based on the LSC marker GPR56 allowed isolation of triple-mutated from DNMT3A/NPM1 double-mutated subclones. Moreover, in DNMT3A R882-mutated patients, CpG hypomethylation at the HLF transcription start site correlated with high HLF mRNA expression, which was itself associated with poor survival. Loss of HLF via CRISPR/Cas9 significantly reduced the CD34+GPR56+ LSC compartment of primary human triple-mutated AML cells in serial xenotransplantation assays. HLF knockout cells were more actively cycling when freshly harvested from mice, but rapidly exhausted when reintroduced in culture. RNA sequencing of primary human triple-mutated AML cells after shRNA-mediated HLF knockdown revealed the NOTCH target Hairy and Enhancer of Split 1 (HES1) and the cyclin-dependent kinase inhibitor CDKN1C/p57 as novel targets of HLF, potentially mediating these effects. Overall, our data establish HLF as a novel LSC regulator in this genetically defined high-risk AML subgroup.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas Nucleares/genética , Tirosina Quinase 3 Semelhante a fms/genética , Animais , Biomarcadores , Ciclo Celular/genética , Linhagem Celular Tumoral , Biologia Computacional/métodos , DNA Metiltransferase 3A , Modelos Animais de Doenças , Duplicação Gênica , Perfilação da Expressão Gênica , Humanos , Imunofenotipagem , Camundongos Transgênicos , Mutação , Nucleofosmina , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Sequências de Repetição em Tandem , Sítio de Iniciação de Transcrição , Transcriptoma
10.
Haematologica ; 104(3): 546-555, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30309851

RESUMO

Combination chemotherapy has proven to be a favorable strategy to treat acute leukemia. However, the introduction of novel compounds remains challenging and is hindered by a lack of understanding of their mechanistic interactions with established drugs. In the present study, we demonstrate a highly increased response of various acute leukemia cell lines, drug-resistant cells and patient-derived xenograft cells by combining the recently introduced protein disulfide isomerase inhibitor PS89 with cytostatics. In leukemic cells, a proteomics-based target fishing approach revealed that PS89 affects a whole network of endoplasmic reticulum homeostasis proteins. We elucidate that the strong induction of apoptosis in combination with cytostatics is orchestrated by the PS89 target B-cell receptor-associated protein 31, which transduces apoptosis signals at the endoplasmic reticulum -mitochondria interface. Activation of caspase-8 and cleavage of B-cell receptor-associated protein 31 stimulate a pro-apoptotic crosstalk including release of calcium from the endoplasmic reticulum and an increase in the levels of reactive oxygen species resulting in amplification of mitochondrial apoptosis. The findings of this study promote PS89 as a novel chemosensitizing agent for the treatment of acute leukemia and uncovers that targeting the endoplasmic reticulum - mitochondrial network of cell death is a promising approach in combination therapy.


Assuntos
Citostáticos/farmacologia , Retículo Endoplasmático/metabolismo , Leucemia/metabolismo , Mitocôndrias/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 8/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Leucemia/tratamento farmacológico , Leucemia/patologia , Camundongos , Modelos Biológicos , Proteoma , Proteômica/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Nat Biotechnol ; 41(11): 1618-1632, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36914885

RESUMO

Chimeric antigen receptor T cells (CAR-T cells) have emerged as a powerful treatment option for individuals with B cell malignancies but have yet to achieve success in treating acute myeloid leukemia (AML) due to a lack of safe targets. Here we leveraged an atlas of publicly available RNA-sequencing data of over 500,000 single cells from 15 individuals with AML and tissue from 9 healthy individuals for prediction of target antigens that are expressed on malignant cells but lacking on healthy cells, including T cells. Aided by this high-resolution, single-cell expression approach, we computationally identify colony-stimulating factor 1 receptor and cluster of differentiation 86 as targets for CAR-T cell therapy in AML. Functional validation of these established CAR-T cells shows robust in vitro and in vivo efficacy in cell line- and human-derived AML models with minimal off-target toxicity toward relevant healthy human tissues. This provides a strong rationale for further clinical development.


Assuntos
Leucemia Mieloide Aguda , Transcriptoma , Humanos , Transcriptoma/genética , Linfócitos T , Imunoterapia Adotiva , Linhagem Celular , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/metabolismo , Linhagem Celular Tumoral
13.
Biomedicines ; 10(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453575

RESUMO

CD73 catalyzes the conversion of ATP to adenosine, which is involved in various physiological and pathological processes, including tumor immune escape. Because CD73 expression and activity are particularly high on cancer cells and contribute to the immunosuppressive properties of the tumor environment, it is considered an attractive target molecule for specific cancer therapies. In line, several studies demonstrated that CD73 inhibition has a significant antitumor effect. However, complete blocking of CD73 activity can evoke autoimmune phenomena and adverse side effects. We developed a CD73-specific antibody, 22E6, that specifically inhibits the enzymatic activity of membrane-tethered CD73 present in high concentrations on cancer cells and cancer cell-derived extracellular vesicles but has no inhibitory effect on soluble CD73. Inhibition of CD73 on tumor cells with 22E6 resulted in multiple effects on tumor cells in vitro, including increased apoptosis and interference with chemoresistance. Intriguingly, in a xenograft mouse model of acute lymphocytic leukemia (ALL), 22E6 treatment resulted in an initial tumor growth delay in some animals, followed by a complete loss of CD73 expression on ALL cells in all 22E6 treated animals, indicating tumor immune escape. Taken together, 22E6 shows great potential for cancer therapy, favorably in combination with other drugs.

14.
Genome Biol ; 23(1): 88, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35361256

RESUMO

Cost-efficient library generation by early barcoding has been central in propelling single-cell RNA sequencing. Here, we optimize and validate prime-seq, an early barcoding bulk RNA-seq method. We show that it performs equivalently to TruSeq, a standard bulk RNA-seq method, but is fourfold more cost-efficient due to almost 50-fold cheaper library costs. We also validate a direct RNA isolation step, show that intronic reads are derived from RNA, and compare cost-efficiencies of available protocols. We conclude that prime-seq is currently one of the best options to set up an early barcoding bulk RNA-seq protocol from which many labs would profit.


Assuntos
RNA , Sequência de Bases , Biblioteca Gênica , RNA/genética , Análise de Sequência de RNA/métodos , Sequenciamento do Exoma
15.
J Hematol Oncol ; 15(1): 25, 2022 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-35279202

RESUMO

Acute myeloid leukemia (AML) patients suffer dismal prognosis upon treatment resistance. To study functional heterogeneity of resistance, we generated serially transplantable patient-derived xenograft (PDX) models from one patient with AML and twelve clones thereof, each derived from a single stem cell, as proven by genetic barcoding. Transcriptome and exome sequencing segregated clones according to their origin from relapse one or two. Undetectable for sequencing, multiplex fluorochrome-guided competitive in vivo treatment trials identified a subset of relapse two clones as uniquely resistant to cytarabine treatment. Transcriptional and proteomic profiles obtained from resistant PDX clones and refractory AML patients defined a 16-gene score that was predictive of clinical outcome in a large independent patient cohort. Thus, we identified novel genes related to cytarabine resistance and provide proof of concept that intra-tumor heterogeneity reflects inter-tumor heterogeneity in AML.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Células Clonais , Citarabina/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Recidiva , Células-Tronco/patologia
16.
Leukemia ; 36(10): 2396-2407, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35999260

RESUMO

Internal tandem duplications (ITD) in the receptor tyrosine kinase FLT3 occur in 25 % of acute myeloid leukemia (AML) patients, drive leukemia progression and confer a poor prognosis. Primary resistance to FLT3 kinase inhibitors (FLT3i) quizartinib, crenolanib and gilteritinib is a frequent clinical challenge and occurs in the absence of identifiable genetic causes. This suggests that adaptive cellular mechanisms mediate primary resistance to on-target FLT3i therapy. Here, we systematically investigated acute cellular responses to on-target therapy with multiple FLT3i in FLT3-ITD + AML using recently developed functional translatome proteomics (measuring changes in the nascent proteome) with phosphoproteomics. This pinpointed AKT-mTORC1-ULK1-dependent autophagy as a dominant resistance mechanism to on-target FLT3i therapy. FLT3i induced autophagy in a concentration- and time-dependent manner specifically in FLT3-ITD + cells in vitro and in primary human AML cells ex vivo. Pharmacological or genetic inhibition of autophagy increased the sensitivity to FLT3-targeted therapy in cell lines, patient-derived xenografts and primary AML cells ex vivo. In mice xenografted with FLT3-ITD + AML cells, co-treatment with oral FLT3 and autophagy inhibitors synergistically impaired leukemia progression and extended overall survival. Our findings identify a molecular mechanism responsible for primary FLT3i treatment resistance and demonstrate the pre-clinical efficacy of a rational combination treatment strategy targeting both FLT3 and autophagy induction.


Assuntos
Leucemia Mieloide Aguda , Proteômica , Animais , Autofagia , Resistencia a Medicamentos Antineoplásicos , Humanos , Leucemia Mieloide Aguda/genética , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteoma , Proteínas Proto-Oncogênicas c-akt , Tirosina Quinase 3 Semelhante a fms/uso terapêutico
17.
Hepatology ; 51(4): 1226-36, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20099303

RESUMO

UNLABELLED: Regulation of hepatocellular apoptosis is crucial for liver homeostasis. Increased sensitivity of hepatocytes toward apoptosis results in chronic liver injury, whereas apoptosis resistance is linked to hepatocarcinogenesis and nonresponsiveness to therapy-induced cell death. Recently, we have demonstrated an essential role of the antiapoptotic Bcl-2 family member Myeloid cell leukemia-1 (Mcl-1) in hepatocyte survival. In mice lacking Mcl-1 specifically in hepatocytes (Mcl-1(Deltahep)), spontaneous apoptosis caused severe liver damage. Here, we demonstrate that chronically increased apoptosis of hepatocytes coincides with strong hepatocyte proliferation resulting in hepatocellular carcinoma (HCC). Liver cell tumor formation was observed in >50% of Mcl-1(Deltahep) mice already by the age of 8 months, whereas 12-month-old wild-type (wt) and heterozygous Mcl-1(flox/wt) mice lacked tumors. Tumors revealed a heterogenous spectrum ranging from small dysplastic nodules to HCC. The neoplastic nature of the tumors was confirmed by histology, expression of the HCC marker glutamine synthetase and chromosomal aberrations. Liver carcinogenesis in Mcl-1(Deltahep) mice was paralleled by markedly increased levels of Survivin, an important regulator of mitosis which is selectively overexpressed in common human cancers. CONCLUSION: This study provides in vivo evidence that increased apoptosis of hepatocytes not only impairs liver homeostasis but is also accompanied by hepatocyte proliferation and hepatocarcinogenesis. Our findings might have implications for understanding apoptosis-related human liver diseases.


Assuntos
Apoptose , Hepatócitos/patologia , Neoplasias Hepáticas Experimentais/etiologia , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Animais , Proliferação de Células , Aberrações Cromossômicas , Hepatócitos/metabolismo , Camundongos , Camundongos Knockout , Proteína de Sequência 1 de Leucemia de Células Mieloides , Proteínas Proto-Oncogênicas c-bcl-2/deficiência , Proteínas Proto-Oncogênicas c-bcl-2/genética
18.
J Hematol Oncol ; 14(1): 155, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579739

RESUMO

BACKGROUND: Acute myeloid leukaemia (AML) stem cells (LSCs) cause disease relapse. The CD47 "don't eat me signal" is upregulated on LSCs and contributes to immune evasion by inhibiting phagocytosis through interacting with myeloid-specific signal regulatory protein alpha (SIRPα). Activation of macrophages by blocking CD47 has been successful, but the ubiquitous expression of CD47 on healthy cells poses potential limitations for such therapies. In contrast, CD123 is a well-known LSC-specific surface marker utilized as a therapeutic target. Here, we report the development of SIRPα-αCD123 fusion antibodies that localize the disruption of CD47/SIRPα signalling to AML while specifically enhancing LSC clearance. METHODS: SIRPα-αCD123 antibodies were generated by fusing the extracellular domain of SIRPα to an αCD123 antibody. The binding properties of the antibodies were analysed by flow cytometry and surface plasmon resonance. The functional characteristics of the fusion antibodies were determined by antibody-dependent cellular phagocytosis and antibody-dependent cellular cytotoxicity assays using primary AML patient cells. Finally, an in vivo engraftment assay was utilized to assess LSC targeting. RESULTS: SIRPα-αCD123 fusion antibodies exhibited increased binding and preferential targeting of CD123+ CD47+ AML cells even in the presence of CD47+ healthy cells. Furthermore, SIRPα-αCD123 fusion antibodies confined disruption of the CD47-SIRPα axis locally to AML cells. In vitro experiments demonstrated that SIRPα-αCD123 antibodies greatly enhanced AML cell phagocytosis mediated by allogeneic and autologous macrophages. Moreover, SIRPα-αCD123 fusion antibodies efficiently targeted LSCs with in vivo engraftment potential. CONCLUSIONS: SIRPα-αCD123 antibodies combine local CD47 blockade with specific LSC targeting in a single molecule, minimize the risk of targeting healthy cells and efficiently eliminate AML LSCs. These results validate SIRPα-αCD123 antibodies as promising therapeutic interventions for AML.


Assuntos
Antígenos de Diferenciação/imunologia , Antineoplásicos Imunológicos/uso terapêutico , Antígeno CD47/imunologia , Subunidade alfa de Receptor de Interleucina-3/imunologia , Leucemia Mieloide Aguda/tratamento farmacológico , Células-Tronco Neoplásicas/efeitos dos fármacos , Receptores Imunológicos/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Tumoral , Feminino , Humanos , Leucemia Mieloide Aguda/imunologia , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/imunologia
19.
Sci Rep ; 11(1): 5838, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33712646

RESUMO

Chemotherapy resistance is the main impediment in the treatment of acute myeloid leukaemia (AML). Despite rapid advances, the various mechanisms inducing resistance development remain to be defined in detail. Here we report that loss-of-function mutations (LOF) in the histone methyltransferase EZH2 have the potential to confer resistance against the chemotherapeutic agent cytarabine. We identify seven distinct EZH2 mutations leading to loss of H3K27 trimethylation via multiple mechanisms. Analysis of matched diagnosis and relapse samples reveal a heterogenous regulation of EZH2 and a loss of EZH2 in 50% of patients. We confirm that loss of EZH2 induces resistance against cytarabine in the cell lines HEK293T and K562 as well as in a patient-derived xenograft model. Proteomics and transcriptomics analysis reveal that resistance is conferred by upregulation of multiple direct and indirect EZH2 target genes that are involved in apoptosis evasion, augmentation of proliferation and alteration of transmembrane transporter function. Our data indicate that loss of EZH2 results in upregulation of its target genes, providing the cell with a selective growth advantage, which mediates chemotherapy resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Mutação com Perda de Função/genética , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Leucemia Mieloide Aguda/diagnóstico , Recidiva Local de Neoplasia/patologia , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Nat Commun ; 12(1): 5655, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34580292

RESUMO

High-throughput sequencing describes multiple alterations in individual tumors, but their functional relevance is often unclear. Clinic-close, individualized molecular model systems are required for functional validation and to identify therapeutic targets of high significance for each patient. Here, we establish a Cre-ERT2-loxP (causes recombination, estrogen receptor mutant T2, locus of X-over P1) based inducible RNAi- (ribonucleic acid interference) mediated gene silencing system in patient-derived xenograft (PDX) models of acute leukemias in vivo. Mimicking anti-cancer therapy in patients, gene inhibition is initiated in mice harboring orthotopic tumors. In fluorochrome guided, competitive in vivo trials, silencing of the apoptosis regulator MCL1 (myeloid cell leukemia sequence 1) correlates to pharmacological MCL1 inhibition in patients´ tumors, demonstrating the ability of the method to detect therapeutic vulnerabilities. The technique identifies a major tumor-maintaining potency of the MLL-AF4 (mixed lineage leukemia, ALL1-fused gene from chromosome 4) fusion, restricted to samples carrying the translocation. DUX4 (double homeobox 4) plays an essential role in patients' leukemias carrying the recently described DUX4-IGH (immunoglobulin heavy chain) translocation, while the downstream mediator DDIT4L (DNA-damage-inducible transcript 4 like) is identified as therapeutic vulnerability. By individualizing functional genomics in established tumors in vivo, our technique decisively complements the value chain of precision oncology. Being broadly applicable to tumors of all kinds, it will considerably reinforce personalizing anti-cancer treatment in the future.


Assuntos
Antineoplásicos/farmacologia , Biomarcadores Tumorais/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Genética Reversa/métodos , Proteínas Adaptadoras de Transdução de Sinal/antagonistas & inibidores , Proteínas Adaptadoras de Transdução de Sinal/genética , Adulto , Animais , Antineoplásicos/uso terapêutico , Biomarcadores Tumorais/antagonistas & inibidores , Criança , Feminino , Inativação Gênica , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Camundongos , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , Proteína de Leucina Linfoide-Mieloide/genética , Proteínas de Fusão Oncogênica/antagonistas & inibidores , Proteínas de Fusão Oncogênica/genética , Medicina de Precisão/métodos , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa