Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(11): e0277937, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36409750

RESUMO

The importance of human cell-based in vitro tools to drug development that are robust, accurate, and predictive cannot be understated. There has been significant effort in recent years to develop such platforms, with increased interest in 3D models that can recapitulate key aspects of biology that 2D models might not be able to deliver. We describe the development of a 3D human cell-based in vitro assay for the investigation of nephrotoxicity, using RPTEC-TERT1 cells. These RPTEC-TERT1 proximal tubule organoids 'tubuloids' demonstrate marked differences in physiologically relevant morphology compared to 2D monolayer cells, increased sensitivity to nephrotoxins observable via secreted protein, and with a higher degree of similarity to native human kidney tissue. Finally, tubuloids incubated with nephrotoxins demonstrate altered Na+/K+-ATPase signal intensity, a potential avenue for a high-throughput, translatable nephrotoxicity assay.


Assuntos
Túbulos Renais Proximais , Organoides , Humanos , Linhagem Celular , Túbulos Renais Proximais/metabolismo , Túbulos Renais , Rim
2.
Cell Prolif ; 52(6): e12677, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31441145

RESUMO

The skin is a highly complex organ, responsible for sensation, protection against the environment (pollutants, foreign proteins, infection) and thereby linked to the immune and sensory systems in the neuro-immuno-cutaneous (NIC) system. Cutaneous innervation is a key part of the peripheral nervous system; therefore, the skin should be considered a sensory organ and an important part of the central nervous system, an 'active interface' and the first connection of the body to the outside world. Peripheral nerves are a complex class of neurons within these systems, subsets of functions are conducted, including mechanoreception, nociception and thermoception. Epidermal and dermal cells produce signalling factors (such as cytokines or growth factors), neurites influence skin cells (such as via neuropeptides), and peripheral nerves have a role in both early and late stages of the inflammatory response. One way this is achieved, specifically in the cutaneous system, is through neuropeptide release and signalling, especially via substance P (SP), neuropeptide Y (NPY) and nerve growth factor (NGF). Cutaneous, neuronal and immune cells play a central role in many conditions, including psoriasis, atopic dermatitis, vitiligo, UV-induced immunosuppression, herpes and lymphomas. Therefore, it is critical to understand the connections and interplay between the peripheral nervous system and the skin and immune systems, the NIC system. Relevant in vitro tissue models based on human skin equivalents can be used to gain insight and to address impact across research and clinical needs.


Assuntos
Inflamação/imunologia , Neuropeptídeos/imunologia , Pele/metabolismo , Engenharia Tecidual , Animais , Epiderme/metabolismo , Humanos , Terapia de Imunossupressão/métodos , Pele/imunologia
3.
Adv Biosyst ; 3(1): e1800283, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32627348

RESUMO

A variety of human skin equivalents (HSEs) has been designed for clinical use or for exploratory skin research. In vitro HSE models have been used to target relationships between the skin and nervous or immune systems but have not yet considered the neuro-immuno-cutaneous (NIC) system. In this study, HSEs are described, with and without neural and immune components, to discern these types of effects. These systems are composed of only primary human cells and contain an epidermis, dermis, hypodermis (with immune cells), and human induced neural stem cells for the neuronal component. RNA sequencing is utilized to confirm differences between sample groups and to identify unique or important genes with respect to sample type. Only samples with both neural and immune components result in the upregulation of genes in all the key biological pathways explored. The analysis of protein secretion confirms that this group has measurable functions related to all key cell types. Overall, this novel skin tissue system confirms that designing HSEs that include the NIC system results in a tissue model that reflects key functions. These systems could be used to identify selected targets of interest in skin research related to healthy or diseased states.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa