Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Traffic ; 24(7): 284-307, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37129279

RESUMO

A key event in atherogenesis is the formation of lipid-loaded macrophages, lipidotic cells, which exhibit irreversible accumulation of undigested modified low-density lipoproteins (LDL) in lysosomes. This event culminates in the loss of cell homeostasis, inflammation, and cell death. Nevertheless, the exact chemical etiology of atherogenesis and the molecular and cellular mechanisms responsible for the impairment of lysosome function in plaque macrophages are still unknown. Here, we demonstrate that macrophages exposed to cholesteryl hemiazelate (ChA), one of the most prevalent products of LDL-derived cholesteryl ester oxidation, exhibit enlarged peripheral dysfunctional lysosomes full of undigested ChA and neutral lipids. Both lysosome area and accumulation of neutral lipids are partially irreversible. Interestingly, the dysfunctional peripheral lysosomes are more prone to fuse with the plasma membrane, secreting their undigested luminal content into the extracellular milieu with potential consequences for the pathology. We further demonstrate that this phenotype is mechanistically linked to the nuclear translocation of the MiT/TFE family of transcription factors. The induction of lysosome biogenesis by ChA appears to partially protect macrophages from lipid-induced cytotoxicity. In sum, our data show that ChA is involved in the etiology of lysosome dysfunction and promotes the exocytosis of these organelles. This latter event is a new mechanism that may be important in the pathogenesis of atherosclerosis.


Assuntos
Aterosclerose , Ésteres do Colesterol , Humanos , Ésteres do Colesterol/metabolismo , Macrófagos/metabolismo , Lisossomos/metabolismo , Aterosclerose/metabolismo , Exocitose
2.
Traffic ; 23(5): 238-269, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35343629

RESUMO

Since the discovery of lysosomes more than 70 years ago, much has been learned about the functions of these organelles. Lysosomes were regarded as exclusively degradative organelles, but more recent research has shown that they play essential roles in several other cellular functions, such as nutrient sensing, intracellular signalling and metabolism. Methodological advances played a key part in generating our current knowledge about the biology of this multifaceted organelle. In this review, we cover current methods used to analyze lysosome morphology, positioning, motility and function. We highlight the principles behind these methods, the methodological strategies and their advantages and limitations. To extract accurate information and avoid misinterpretations, we discuss the best strategies to identify lysosomes and assess their characteristics and functions. With this review, we aim to stimulate an increase in the quantity and quality of research on lysosomes and further ground-breaking discoveries on an organelle that continues to surprise and excite cell biologists.


Assuntos
Lisossomos , Redes e Vias Metabólicas , Lisossomos/metabolismo , Transdução de Sinais
3.
J Cell Sci ; 135(5)2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34528688

RESUMO

In atherosclerotic lesions, vascular smooth muscle cells (VSMCs) represent half of the foam cell population, which is characterized by an aberrant accumulation of undigested lipids within lysosomes. Loss of lysosome function impacts VSMC homeostasis and disease progression. Understanding the molecular mechanisms underlying lysosome dysfunction in these cells is, therefore, crucial. We identify cholesteryl hemiazelate (ChA), a stable oxidation end-product of cholesteryl-polyunsaturated fatty acid esters, as an inducer of lysosome malfunction in VSMCs. ChA-treated VSMCs acquire a foam-cell-like phenotype, characterized by enlarged lysosomes full of ChA and neutral lipids. The lysosomes are perinuclear and exhibit degradative capacity and cargo exit defects. Lysosome luminal pH is also altered. Even though the transcriptional response machinery and autophagy are not activated by ChA, the addition of recombinant lysosomal acid lipase (LAL) is able to rescue lysosome dysfunction. ChA significantly affects VSMC proliferation and migration, impacting atherosclerosis. In summary, this work shows that ChA is sufficient to induce lysosomal dysfunction in VSMCs, that, in ChA-treated VSMCs, neither lysosome biogenesis nor autophagy are triggered, and, finally, that recombinant LAL can be a therapeutic approach for lysosomal dysfunction.


Assuntos
Músculo Liso Vascular , Miócitos de Músculo Liso , Proliferação de Células , Células Cultivadas , Células Espumosas , Homeostase , Lisossomos
4.
J Lipid Res ; 64(9): 100419, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37482218

RESUMO

Oxidation of PUFAs in LDLs trapped in the arterial intima plays a critical role in atherosclerosis. Though there have been many studies on the atherogenicity of oxidized derivatives of PUFA-esters of cholesterol, the effects of cholesteryl hemiesters (ChEs), the oxidation end products of these esters, have not been studied. Through lipidomics analyses, we identified and quantified two ChE types in the plasma of CVD patients and identified four ChE types in human endarterectomy specimens. Cholesteryl hemiazelate (ChA), the ChE of azelaic acid (n-nonane-1,9-dioic acid), was the most prevalent ChE identified in both cases. Importantly, human monocytes, monocyte-derived macrophages, and neutrophils exhibit inflammatory features when exposed to subtoxic concentrations of ChA in vitro. ChA increases the secretion of proinflammatory cytokines such as interleukin-1ß and interleukin-6 and modulates the surface-marker profile of monocytes and monocyte-derived macrophage. In vivo, when zebrafish larvae were fed with a ChA-enriched diet, they exhibited neutrophil and macrophage accumulation in the vasculature in a caspase 1- and cathepsin B-dependent manner. ChA also triggered lipid accumulation at the bifurcation sites of the vasculature of the zebrafish larvae and negatively impacted their life expectancy. We conclude that ChA behaves as an endogenous damage-associated molecular pattern with inflammatory and proatherogenic properties.


Assuntos
Aterosclerose , Peixe-Zebra , Animais , Humanos , Ésteres do Colesterol , Monócitos , Inflamação , Ésteres
5.
J Cell Physiol ; 236(8): 6011-6024, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33469937

RESUMO

Alkaptonuria (AKU) is an ultra-rare disease caused by the deficient activity of homogentisate 1,2-dioxygenase enzyme, leading the accumulation of homogentisic acid (HGA) in connective tissues implicating the formation of a black pigmentation called "ochronosis." Although AKU is a multisystemic disease, the most affected tissue is the articular cartilage, which during the pathology appears to be highly damaged. In this study, a model of alkaptonuric chondrocytes and cartilage was realized to investigate the role of HGA in the alteration of the extracellular matrix (ECM). The AKU tissues lost its architecture composed of collagen, proteoglycans, and all the proteins that characterize the ECM. The cause of this alteration in AKU cartilage is attributed to a degeneration of the cytoskeletal network in chondrocytes caused by the accumulation of HGA. The three cytoskeletal proteins, actin, vimentin, and tubulin, were analyzed and a modification in their amount and disposition in AKU chondrocytes model was identified. Cytoskeleton is involved in many fundamental cellular processes; therefore, the aberration in this complex network is involved in the manifestation of AKU disease.


Assuntos
Cartilagem Articular/efeitos dos fármacos , Condrócitos/efeitos dos fármacos , Citoesqueleto/efeitos dos fármacos , Matriz Extracelular/efeitos dos fármacos , Ácido Homogentísico/farmacologia , Actinas/efeitos dos fármacos , Actinas/metabolismo , Alcaptonúria/metabolismo , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Citoesqueleto/metabolismo , Matriz Extracelular/metabolismo , Humanos , Microtúbulos/efeitos dos fármacos , Microtúbulos/metabolismo , Ocronose/tratamento farmacológico , Vimentina/efeitos dos fármacos , Vimentina/metabolismo
6.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1862(2): 210-220, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27793708

RESUMO

RATIONALE: Cholesteryl hemiesters are oxidation products of polyunsaturated fatty acid esters of cholesterol. Their oxo-ester precursors have been identified as important components of the "core aldehydes" of human atheromata and in oxidized lipoproteins (Ox-LDL). We had previously shown, for the first time, that a single compound of this family, cholesteryl hemisuccinate (ChS), is sufficient to cause irreversible lysosomal lipid accumulation (lipidosis), and is toxic to macrophages. These features, coupled to others such as inflammation, are typically seen in atherosclerosis. OBJECTIVE: To obtain insights into the mechanism of cholesteryl hemiester-induced pathological changes in lysosome function and induction of inflammation in vitro and assess their impact in vivo. METHODS AND RESULTS: We have examined the effects of ChS on macrophages (murine cell lines and primary cultures) in detail. Specifically, lysosomal morphology, pH, and proteolytic capacity were examined. Exposure of macrophages to sub-toxic ChS concentrations caused enlargement of the lysosomes, changes in their luminal pH, and accumulation of cargo in them. In primary mouse bone marrow-derived macrophages (BMDM), ChS-exposure increased the secretion of IL-1ß, TNF-α and IL-6. In zebrafish larvae (wild-type AB and PU.1:EGFP), fed with a ChS-enriched diet, we observed lipid accumulation, myeloid cell-infiltration in their vasculature and decrease in larval survival. Under the same conditions the effects of ChS were more profound than the effects of free cholesterol (FC). CONCLUSIONS: Our data strongly suggest that cholesteryl hemiesters are pro-atherogenic lipids able to mimic features of Ox-LDL both in vitro and in vivo.


Assuntos
Colesterol/metabolismo , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Animais , Aterosclerose/metabolismo , Linhagem Celular , Ésteres do Colesterol/metabolismo , Ésteres/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Larva/metabolismo , Lipidoses/metabolismo , Camundongos , Células RAW 264.7 , Peixe-Zebra
7.
Antimicrob Agents Chemother ; 60(6): 3323-32, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26976875

RESUMO

Quaternary ammonium compounds (QAC) are widely used, cheap, and chemically stable disinfectants and topical antiseptics with wide-spectrum antimicrobial activities. Within this group of compounds, we recently showed that there are significant differences between the pharmacodynamics of n-alkyl quaternary ammonium surfactants (QAS) with a short (C12) alkyl chain when in vitro toxicities toward bacterial and mammalian epithelial cells are compared. These differences result in an attractive therapeutic window that justifies studying short-chain QAS as prophylactics for sexually transmitted infections (STI) and perinatal vertically transmitted urogenital infections (UGI). We have evaluated the antimicrobial activities of short-chain (C12) n-alkyl QAS against several STI and UGI pathogens as well as against commensal Lactobacillus species. Inhibition of infection of HeLa cells by Neisseria gonorrhoeae and Chlamydia trachomatis was studied at concentrations that were not toxic to the HeLa cells. We show that the pathogenic bacteria are much more susceptible to QAS toxic effects than the commensal vaginal flora and that QAS significantly attenuate the infectivity of N. gonorrhoeae and C. trachomatis without affecting the viability of epithelial cells of the vaginal mucosa. N-Dodecylpyridinium bromide (C12PB) was found to be the most effective QAS. Our results strongly suggest that short-chain (C12) n-alkyl pyridinium bromides and structurally similar compounds are promising microbicide candidates for topical application in the prophylaxis of STI and perinatal vertical transmission of UGI.


Assuntos
Anti-Infecciosos/farmacologia , Chlamydia trachomatis/efeitos dos fármacos , Gonorreia/tratamento farmacológico , Compostos de Amônio Quaternário/farmacologia , Streptococcus/efeitos dos fármacos , Tensoativos/farmacologia , Células HeLa , Humanos , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Neisseria gonorrhoeae/efeitos dos fármacos , Infecções Sexualmente Transmissíveis/microbiologia
8.
J Antimicrob Chemother ; 71(3): 641-54, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26679255

RESUMO

OBJECTIVES: Broad-spectrum antimicrobial activity of quaternary ammonium surfactants (QAS) makes them attractive and cheap topical prophylactic options for sexually transmitted infections and perinatal vertically transmitted urogenital infections. Although attributed to their high affinity for biological membranes, the mechanisms behind QAS microbicidal activity are not fully understood. We evaluated how QAS structure affects antimicrobial activity and whether this can be exploited for use in prophylaxis of bacterial infections. METHODS: Acute toxicity of QAS to in vitro models of human epithelial cells and bacteria were compared to identify selective and potent bactericidal agents. Bacterial cell viability, membrane integrity, cell cycle and metabolism were evaluated to establish the mechanisms involved in selective toxicity of QAS. RESULTS: QAS toxicity normalized relative to surfactant critical micelle concentration showed n-dodecylpyridinium bromide (C12PB) to be the most effective, with a therapeutic index of ∼10 for an MDR strain of Escherichia coli and >20 for Neisseria gonorrhoeae after 1 h of exposure. Three modes of QAS antibacterial action were identified: impairment of bacterial energetics and cell division at low concentrations; membrane permeabilization and electron transport inhibition at intermediate doses; and disruption of bacterial membranes and cell lysis at concentrations close to the critical micelle concentration. In contrast, toxicity to mammalian cells occurs at higher concentrations and, as we previously reported, results primarily from mitochondrial dysfunction and apoptotic cell death. CONCLUSIONS: Our data show that short chain (C12) n-alkyl pyridinium bromides have a sufficiently large therapeutic window to be good microbicide candidates.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Compostos de Amônio Quaternário/química , Compostos de Amônio Quaternário/farmacologia , Tensoativos/química , Tensoativos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/uso terapêutico , Divisão Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Humanos , Metabolismo/efeitos dos fármacos , Viabilidade Microbiana/efeitos dos fármacos , Neisseria gonorrhoeae/efeitos dos fármacos , Neisseria gonorrhoeae/fisiologia , Compostos de Amônio Quaternário/uso terapêutico , Tensoativos/uso terapêutico
9.
Neurodegener Dis ; 15(4): 207-18, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25896770

RESUMO

BACKGROUND: Several cellular mechanisms have been proposed to explain the pathogenesis of Huntington's disease (HD), including the lack of striatal brain-derived neurotrophic factor (BDNF). Thus, by preferentially binding to tropomyosin receptor kinase B (TrkB) receptor, BDNF is an important neurotrophin implicated in striatal neuronal survival. OBJECTIVE: To study the influence of BDNF and TrkB receptors in intracellular signaling pathways and caspase-3 activation in HD striatal cells. METHODS: HD mutant knockin and wild-type striatal cells were transduced with preproBDNF or full-length TrkB receptors to analyze BDNF processing, AKT and extracellular signal-regulated kinase (ERK) activation and the activity of caspase-3 in the absence or presence of staurosporine (STS). RESULTS: HD mutant cells transduced with preproBDNF-mCherry (mCh) expressed similar levels of pro- and mature BDNF compared to WT cells, but HD cells released lower levels of pro- and mature BDNF. Despite this, BDNF-mCh overexpression rescued decreased AKT phosphorylation and reduced the caspase-3 activation observed in HD cells. Activated ERK was also enhanced in HD BDNF-mCh/TrkB-eGFP receptor co-cultures. Of relevance, overexpression of TrkB-eGFP in HD cells decreased caspase-3 activation, and stimulation of TrkB-eGFP-transduced mutant cells with recombinant human BDNF reduced both basal and STS-induced caspase-3 activation. CONCLUSION: The results highlight the importance of BDNF-induced TrkB receptor signaling in rescuing HD-mediated apoptotic features in striatal cells.


Assuntos
Apoptose , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corpo Estriado/metabolismo , Doença de Huntington/metabolismo , Glicoproteínas de Membrana/metabolismo , Neurônios/metabolismo , Proteínas Tirosina Quinases/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Humanos , Proteína Huntingtina , Sistema de Sinalização das MAP Quinases , Proteínas do Tecido Nervoso/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor trkB , Proteínas Recombinantes/metabolismo , Transdução de Sinais
10.
Antimicrob Agents Chemother ; 57(6): 2631-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23529737

RESUMO

Surfactants have long been known to have microbicidal action and have been extensively used as antiseptics and disinfectants for a variety of general hygiene and clinical purposes. Among surfactants, quaternary ammonium compounds (QAC) are known to be the most useful antiseptics and disinfectants. However, our previous toxicological studies showed that QAC are also the most toxic surfactants for mammalian cells. An understanding of the mechanisms that underlie QAC toxicity is a crucial first step in their rational use and in the design and development of more effective and safer molecules. We show that QAC-induced toxicity is mediated primarily through mitochondrial dysfunction in mammalian columnar epithelial cell cultures in vitro. Toxic effects begin at sublethal concentrations and are characterized by mitochondrial fragmentation accompanied by decreased cellular energy charge. At very low concentrations, several QAC act on mitochondrial bioenergetics through a common mechanism of action, primarily by inhibiting mitochondrial respiration initiated at complex I and, to a lesser extent, by slowing down coupled ADP phosphorylation. The result is a reduction of cellular energy charge which, when reduced below 50% of its original value, induces apoptosis. The lethal effects are shown to be primarily a result of this process. At higher doses (closer to the critical micellar concentration), QAC induce the complete breakdown of cellular energy charge and necrotic cell death.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Compostos de Amônio Quaternário/toxicidade , Tensoativos/toxicidade , Animais , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/toxicidade , Linhagem Celular , Desinfetantes/farmacologia , Desinfetantes/toxicidade , Humanos , Mitocôndrias/metabolismo
11.
Cells ; 12(24)2023 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-38132146

RESUMO

There is growing evidence supporting the role of fibroblasts in all stages of atherosclerosis, from the initial phase to fibrous cap and plaque formation. In the arterial wall, as with macrophages and vascular smooth muscle cells, fibroblasts are exposed to a myriad of LDL lipids, including the lipid species formed during the oxidation of their polyunsaturated fatty acids of cholesteryl esters (PUFA-CEs). Recently, our group identified the final oxidation products of the PUFA-CEs, cholesteryl hemiesters (ChE), in tissues from cardiovascular disease patients. Cholesteryl hemiazelate (ChA), the most prevalent lipid of this family, is sufficient to impact lysosome function in macrophages and vascular smooth muscle cells, with consequences for their homeostasis. Here, we show that the lysosomal compartment of ChA-treated fibroblasts also becomes dysfunctional. Indeed, fibroblasts exposed to ChA exhibited a perinuclear accumulation of enlarged lysosomes full of neutral lipids. However, this outcome did not trigger de novo lysosome biogenesis, and only the lysosomal transcription factor E3 (TFE3) was slightly transcriptionally upregulated. As a consequence, autophagy was inhibited, probably via mTORC1 activation, culminating in fibroblasts' apoptosis. Our findings suggest that the impairment of lysosome function and autophagy and the induction of apoptosis in fibroblasts may represent an additional mechanism by which ChA can contribute to the progression of atherosclerosis.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Humanos , Camundongos , Animais , Ésteres do Colesterol , Lisossomos/fisiologia , Ácidos Graxos , Fibroblastos
12.
Traffic ; 11(2): 221-35, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20028485

RESUMO

Phagosome maturation follows a defined biochemical program and, in the vast majority of cases, the microbe inside the phagosome is killed and digested. Although, an important number of pathogens, including Mycobacterium tuberculosis, which kills around two million people every year, have acquired the ability to survive, and even replicate by arresting phagosomal maturation. To identify more of the machinery involved in phagocytosis and phagosomal maturation, we investigated the function of Rab10 in engulfment and maturation of inert particles and Mycobacterium bovis bacille Calmette-Guérin (BCG). We showed that Rab10 association with phagosomes is transient and confocal microscopy revealed detectible levels of Rab10 on phagosomal membranes at very early time-points, occurring even before Rab5 acquisition. Rab10 recruitment had strong functional consequence, as the knockdown of endogenous Rab10 by RNA interference or overexpression of Rab10 dominant-negative mutant delayed maturation of phagosomes of IgG-opsonized latex beads or heat killed-mycobacteria. These results can be explained, at least in part, by the involvement of Rab10 in recycling of some phagosomal components. More importantly, overexpression of the constitutively active mutant of Rab10 partially rescued live-Mycobacterium-containing phagosomes maturation. Indeed, we found that the membrane harbouring Mycobacterium acquired early endosome antigen 1 (EEA-1), a marker excluded from phagosomes in control cells. Altogether these results indicate that Rab10, acting upstream of Rab5, plays a prominent role in phagolysosome formation and can modulate Mycobacterium-containing phagosomes maturation.


Assuntos
Mycobacterium , Fagossomos/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Linhagem Celular Tumoral , Expressão Gênica , Interações Hospedeiro-Patógeno , Humanos , Membranas Intracelulares/metabolismo , Camundongos , Microscopia Confocal , Mycobacterium/fisiologia , Fagocitose , Fagossomos/microbiologia , Ligação Proteica , Receptores de IgG/metabolismo , Ovinos , Proteínas rab de Ligação ao GTP/genética , Proteínas rab5 de Ligação ao GTP/metabolismo
13.
J Cell Biol ; 179(1): 101-15, 2007 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-17923531

RESUMO

Glycosphingolipids are controlled by the spatial organization of their metabolism and by transport specificity. Using immunoelectron microscopy, we localize to the Golgi stack the glycosyltransferases that produce glucosylceramide (GlcCer), lactosylceramide (LacCer), and GM3. GlcCer is synthesized on the cytosolic side and must translocate across to the Golgi lumen for LacCer synthesis. However, only very little natural GlcCer translocates across the Golgi in vitro. As GlcCer reaches the cell surface when Golgi vesicular trafficking is inhibited, it must translocate across a post-Golgi membrane. Concanamycin, a vacuolar proton pump inhibitor, blocks translocation independently of multidrug transporters that are known to translocate short-chain GlcCer. Concanamycin did not reduce LacCer and GM3 synthesis. Thus, GlcCer destined for glycolipid synthesis follows a different pathway and transports back into the endoplasmic reticulum (ER) via the late Golgi protein FAPP2. FAPP2 knockdown strongly reduces GM3 synthesis. Overall, we show that newly synthesized GlcCer enters two pathways: one toward the noncytosolic surface of a post-Golgi membrane and one via the ER toward the Golgi lumen LacCer synthase.


Assuntos
Glucosilceramidas/metabolismo , Glicoesfingolipídeos/biossíntese , Complexo de Golgi/metabolismo , Animais , Antígenos CD/metabolismo , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/fisiologia , Brefeldina A/farmacologia , Proteínas de Transporte/metabolismo , Proteínas de Transporte/fisiologia , Bovinos , Linhagem Celular , Cricetinae , Cricetulus , Retículo Endoplasmático/metabolismo , Glicosiltransferases/metabolismo , Complexo de Golgi/enzimologia , Humanos , Membranas Intracelulares/metabolismo , Lactosilceramidas/metabolismo , Macrolídeos/farmacologia , Camundongos , Microscopia de Fluorescência , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Inibidores da Bomba de Prótons/farmacologia , Ratos
14.
Cells ; 11(19)2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-36230978

RESUMO

Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the 3' untranslated region of the dystrophia myotonica protein kinase gene. AKT dephosphorylation and autophagy are associated with DM1. Autophagy has been widely studied in DM1, although the endocytic pathway has not. AKT has a critical role in endocytosis, and its phosphorylation is mediated by the activation of tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR). EGF-activated EGFR triggers the internalization and degradation of ligand-receptor complexes that serve as a PI3K/AKT signaling platform. Here, we used primary fibroblasts from healthy subjects and DM1 patients. DM1-derived fibroblasts showed increased autophagy flux, with enlarged endosomes and lysosomes. Thereafter, cells were stimulated with a high concentration of EGF to promote EGFR internalization and degradation. Interestingly, EGF binding to EGFR was reduced in DM1 cells and EGFR internalization was also slowed during the early steps of endocytosis. However, EGF-activated EGFR enhanced AKT and ERK1/2 phosphorylation levels in the DM1-derived fibroblasts. Therefore, there was a delay in EGF-stimulated EGFR endocytosis in DM1 cells; this alteration might be due to the decrease in the binding of EGF to EGFR, and not to a decrease in AKT phosphorylation.


Assuntos
Fator de Crescimento Epidérmico , Distrofia Miotônica , Regiões 3' não Traduzidas , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Humanos , Ligantes , Distrofia Miotônica/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
15.
J Neuroinflammation ; 8: 169, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22136135

RESUMO

BACKGROUND: Neuropeptide Y (NPY) is emerging as a modulator of communication between the brain and the immune system. However, in spite of increasing evidence that supports a role for NPY in the modulation of microglial cell responses to inflammatory conditions, there is no consistent information regarding the action of NPY on microglial phagocytic activity, a vital component of the inflammatory response in brain injury. Taking this into consideration, we sought to assess a potential new role for NPY as a modulator of phagocytosis by microglial cells. METHODS: The N9 murine microglial cell line was used to evaluate the role of NPY in phagocytosis. For that purpose, an IgG-opsonized latex bead assay was performed in the presence of lipopolysaccharide (LPS) and an interleukin-1ß (IL-1ß) challenge, and upon NPY treatment. A pharmacological approach using NPY receptor agonists and antagonists followed to uncover which NPY receptor was involved. Moreover, western blotting and immunocytochemical studies were performed to evaluate expression of p38 mitogen-activated protein kinase (MAPK) and heat shock protein 27 (HSP27), in an inflammatory context, upon NPY treatment. RESULTS: Here, we show that NPY inhibits phagocytosis of opsonized latex beads and inhibits actin cytoskeleton reorganization triggered by LPS stimulation. Co-stimulation of microglia with LPS and adenosine triphosphate also resulted in increased phagocytosis, an effect inhibited by an interleukin-1 receptor antagonist, suggesting involvement of IL-1ß signaling. Furthermore, direct application of LPS or IL-1ß activated downstream signaling molecules, including p38 MAPK and HSP27, and these effects were inhibited by NPY. Moreover, we also observed that the inhibitory effect of NPY on phagocytosis was mediated via Y1 receptor activation. CONCLUSIONS: Altogether, we have identified a novel role for NPY in the regulation of microglial phagocytic properties, in an inflammatory context.


Assuntos
Interleucina-1beta/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Neuropeptídeo Y/farmacologia , Fagocitose/efeitos dos fármacos , Animais , Linhagem Celular , Citoesqueleto/metabolismo , Proteínas de Choque Térmico HSP27/metabolismo , Humanos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Microglia/citologia , Receptores de IgG/metabolismo , Receptores de Neuropeptídeo Y/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
16.
Nat Cell Biol ; 4(10): 766-73, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12360287

RESUMO

Salmonella invades mammalian cells by inducing membrane ruffling and macropinocytosis through actin remodelling. Because phosphoinositides are central to actin assembly, we have studied the dynamics of phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P(2)) in HeLa cells during invasion by Salmonella typhimurium. Here we show that the outermost parts of the ruffles induced by invasion show a modest enrichment in PtdIns(4,5)P(2), but that PtdIns(4,5)P(2) is virtually absent from the invaginating regions. Rapid disappearance of PtdIns(4,5)P(2) requires the expression of the Salmonella phosphatase SigD (also known as SopB). Deletion of SigD markedly delays fission of the invaginating membranes, indicating that elimination of PtdIns(4,5)P(2) may be required for rapid formation of Salmonella-containing vacuoles. Heterologous expression of SigD is sufficient to promote the disappearance of PtdIns(4,5)P(2), to reduce the rigidity of the membrane skeleton, and to induce plasmalemmal invagination and fission. Hydrolysis of PtdIns(4,5)P(2) may be a common and essential feature of membrane fission during several internalization processes including invasion, phagocytosis and possibly endocytosis.


Assuntos
Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , RNA Polimerases Dirigidas por DNA/deficiência , Células Eucarióticas/metabolismo , Fosfatos de Fosfatidilinositol/deficiência , Proteínas Serina-Treonina Quinases , Infecções por Salmonella/metabolismo , Salmonella typhimurium/metabolismo , Fator sigma/deficiência , Animais , Células COS , Compartimento Celular/fisiologia , Membrana Celular/ultraestrutura , RNA Polimerases Dirigidas por DNA/genética , Elasticidade , Células Eucarióticas/citologia , Células Eucarióticas/microbiologia , Células HeLa , Humanos , Imuno-Histoquímica , Microscopia Confocal , Fagocitose/fisiologia , Fosfatidilinositol 4,5-Difosfato , Pinocitose/fisiologia , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteínas Recombinantes de Fusão , Infecções por Salmonella/fisiopatologia , Salmonella typhimurium/patogenicidade , Fator sigma/genética , Fosfolipases Tipo C/metabolismo , Vacúolos/metabolismo , Vacúolos/ultraestrutura
17.
Front Cell Dev Biol ; 9: 658995, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33855029

RESUMO

Atherosclerosis is a progressive insidious chronic disease that underlies most of the cardiovascular pathologies, including myocardial infarction and ischemic stroke. The malfunctioning of the lysosomal compartment has a central role in the etiology and pathogenesis of atherosclerosis. Lysosomes are the degradative organelles of mammalian cells and process endogenous and exogenous substrates in a very efficient manner. Dysfunction of these organelles and consequent inefficient degradation of modified low-density lipoproteins (LDL) and apoptotic cells in atherosclerotic lesions have, therefore, numerous deleterious consequences for cellular homeostasis and disease progression. Lysosome dysfunction has been mostly studied in the context of the inherited lysosomal storage disorders (LSDs). However, over the last years it has become increasingly evident that the consequences of this phenomenon are more far-reaching, also influencing the progression of multiple acquired human pathologies, such as neurodegenerative diseases, cancer, and cardiovascular diseases (CVDs). During the formation of atherosclerotic plaques, the lysosomal compartment of the various cells constituting the arterial wall is under severe stress, due to the tremendous amounts of lipoproteins being processed by these cells. The uncontrolled uptake of modified lipoproteins by arterial phagocytic cells, namely macrophages and vascular smooth muscle cells (VSMCs), is the initial step that triggers the pathogenic cascade culminating in the formation of atheroma. These cells become pathogenic "foam cells," which are characterized by dysfunctional lipid-laden lysosomes. Here, we summarize the current knowledge regarding the origin and impact of the malfunctioning of the lysosomal compartment in plaque cells. We further analyze how the field of LSD research may contribute with some insights to the study of CVDs, particularly how therapeutic approaches that target the lysosomes in LSDs could be applied to hamper atherosclerosis progression and associated mortality.

18.
Front Cell Dev Biol ; 9: 674749, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34150769

RESUMO

Inflammatory bowel diseases (IBD) with chronic infiltration of immune cells in the gastrointestinal tract are common and largely incurable. The therapeutic targeting of IBD has been hampered by the complex causality of the disease, with environmental insults like cholesterol-enriched Western diets playing a critical role. To address this drug development challenge, we report an easy-to-handle dietary cholesterol-based in vivo assay that allows the screening of immune-modulatory therapeutics in transgenic zebrafish models. An improvement in the feeding strategy with high cholesterol diet (HCD) selectively induces a robust and consistent infiltration of myeloid cells in larvae intestines that is highly suitable for compound discovery efforts. Using transgenics with fluorescent reporter expression in neutrophils, we take advantage of the unique zebrafish larvae clarity to monitor an acute inflammatory response in a whole organism context with a fully functional innate immune system. The use of semi-automated image acquisition and processing combined with quantitative image analysis allows categorizing anti- or pro-inflammatory compounds based on a leukocytic inflammation index. Our HCD gut inflammation (HCD-GI) assay is simple, cost- and time-effective as well as highly physiological which makes it unique when compared to chemical-based zebrafish models of IBD. Besides, diet is a highly controlled, selective and targeted trigger of intestinal inflammation that avoids extra-intestinal outcomes and reduces the chances of chemical-induced toxicity during screenings. We show the validity of this assay for a screening platform by testing two dietary phenolic acids, namely gallic acid (GA; 3,4,5-trihydroxybenzoic acid) and ferulic acid (FA; 4-hydroxy-3-methoxycinnamic acid), with well described anti-inflammatory actions in animal models of IBD. Analysis of common IBD therapeutics (Prednisolone and Mesalamine) proved the fidelity of our IBD-like intestinal inflammation model. In conclusion, the HCD-GI assay can facilitate and accelerate drug discovery efforts on IBD, by identification of novel lead molecules with immune modulatory action on intestinal neutrophilic inflammation. This will serve as a jumping-off point for more profound analyses of drug mechanisms and pathways involved in early IBD immune responses.

19.
EBioMedicine ; 70: 103504, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34311325

RESUMO

BACKGROUND: Localized stress and cell death in chronic inflammatory diseases may release tissue-specific lipids into the circulation causing the blood plasma lipidome to reflect the type of inflammation. However, deep lipid profiles of major chronic inflammatory diseases have not been compared. METHODS: Plasma lipidomes of patients suffering from two etiologically distinct chronic inflammatory diseases, atherosclerosis-related vascular disease, including cardiovascular (CVD) and ischemic stroke (IS), and systemic lupus erythematosus (SLE), were screened by a top-down shotgun mass spectrometry-based analysis without liquid chromatographic separation and compared to each other and to age-matched controls. Lipid profiling of 596 lipids was performed on a cohort of 427 individuals. Machine learning classifiers based on the plasma lipidomes were used to distinguish the two chronic inflammatory diseases from each other and from the controls. FINDINGS: Analysis of the lipidomes enabled separation of the studied chronic inflammatory diseases from controls based on independent validation test set classification performance (CVD vs control - Sensitivity: 0.94, Specificity: 0.88; IS vs control - Sensitivity: 1.0, Specificity: 1.0; SLE vs control - Sensitivity: 1, Specificity: 0.93) and from each other (SLE vs CVD ‒ Sensitivity: 0.91, Specificity: 1; IS vs SLE - Sensitivity: 1, Specificity: 0.82). Preliminary linear discriminant analysis plots using all data clearly separated the clinical groups from each other and from the controls, and partially separated CVD severities, as classified into five clinical groups. Dysregulated lipids are partially but not fully counterbalanced by statin treatment. INTERPRETATION: Dysregulation of the plasma lipidome is characteristic of chronic inflammatory diseases. Lipid profiling accurately identifies the diseases and in the case of CVD also identifies sub-classes. FUNDING: Full list of funding sources at the end of the manuscript.


Assuntos
Aterosclerose/sangue , AVC Isquêmico/sangue , Lipidômica/métodos , Lipídeos/sangue , Lúpus Eritematoso Sistêmico/sangue , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , Feminino , Humanos , Masculino , Espectrometria de Massas/métodos , Pessoa de Meia-Idade
20.
J Cell Biol ; 170(4): 521-6, 2005 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-16103222

RESUMO

Phosphatidylinositol-4-phosphate (PI(4)P) is the main phosphoinositide in the Golgi complex and has been reported to play a pleiotropic role in transport of cargo from the trans-Golgi network to the plasma membrane (PM) in polarized Madin-Darby canine kidney (MDCK) cells. Overexpression of the chimeric fluorescent protein encoding the pleckstrin homology domain, which is specific for PI(4)P, inhibited both apical and basolateral transport pathways. The transport of apical cargo from the Golgi was shown to be specifically decreased by adenovirus-mediated RNA interference directed against PI(4)P adaptor protein (FAPP) 2. FAPP1 depletion had no effect on transport. On the other hand, FAPP2 was not involved in the Golgi-to-PM transport of cargo that was targeted to the basolateral membrane domain. Thus, we conclude that FAPP2 plays a specific role in apical transport in MDCK cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Polaridade Celular , Adenoviridae , Animais , Transporte Biológico , Membrana Celular/metabolismo , Cães , Complexo de Golgi/metabolismo , Humanos , Fenótipo , Fosfatos de Fosfatidilinositol/metabolismo , Interferência de RNA , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa