Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Sci ; 136(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36594662

RESUMO

Desmosome diseases are caused by dysfunction of desmosomes, which anchor intermediate filaments (IFs) at sites of cell-cell adhesion. For many decades, the focus of attention has been on the role of actin filament-associated adherens junctions in development and disease, especially cancer. However, interference with the function of desmosomes, their molecular constituents or their attachments to IFs has now emerged as a major contributor to a variety of diseases affecting different tissues and organs including skin, heart and the digestive tract. The first Alpine desmosome disease meeting (ADDM) held in Grainau, Germany, in October 2022 brought together international researchers from the basic sciences with clinical experts from diverse fields to share and discuss their ideas and concepts on desmosome function and dysfunction in the different cell types involved in desmosome diseases. Besides the prototypic desmosomal diseases pemphigus and arrhythmogenic cardiomyopathy, the role of desmosome dysfunction in inflammatory bowel diseases and eosinophilic esophagitis was discussed.


Assuntos
Desmossomos , Doença , Humanos , Adesão Celular , Desmossomos/fisiologia , Pênfigo
2.
Cell Mol Life Sci ; 80(1): 25, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36602635

RESUMO

Desmoglein 3 (Dsg3) is a desmosomal cadherin mediating cell adhesion within desmosomes and is the antigen of the autoimmune blistering skin disease pemphigus vulgaris. Therefore, understanding of the complex desmosome turnover process is of high biomedical relevance. Recently, super resolution microscopy was used to characterize desmosome composition and turnover. However, studies were limited because adhesion measurements on living cells were not possible in parallel. Before desmosomal cadherins are incorporated into nascent desmosomes, they are not bound to intermediate filaments but were suggested to be associated with the actin cytoskeleton. However, direct proof that adhesion of a pool of desmosomal cadherins is dependent on actin is missing. Here, we applied single-molecule force spectroscopy measurements with the novel single molecule hybrid-technique STED/SMFS-AFM to investigate the cytoskeletal anchorage of Dsg3 on living keratinocytes for the first time. By application of pharmacological agents we discriminated two different Dsg3 pools, only one of which is anchored to actin filaments. We applied the actin polymerization inhibitor Latrunculin B to modify the actin cytoskeleton and the PKCα activator PMA to modulate intermediate filament anchorage. On the cellular surface Dsg3 adhesion was actin-dependent. In contrast, at cell-cell contacts, Dsg3 adhesion was independent from actin but rather is regulated by PKC which is well established to control desmosome turn-over via intermediate filament anchorage. Taken together, using the novel STED/SMFS-AFM technique, we demonstrated the existence of two Dsg3 pools with different cytoskeletal anchorage mechanisms.


Assuntos
Doenças Autoimunes , Pênfigo , Humanos , Desmogleína 3/metabolismo , Actinas/metabolismo , Desmossomos/metabolismo , Queratinócitos/metabolismo , Pênfigo/metabolismo , Caderinas/metabolismo , Adesão Celular , Doenças Autoimunes/metabolismo
3.
Cell Mol Life Sci ; 79(5): 223, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35380280

RESUMO

Desmosomes are intercellular junctions which mediate cohesion and communication in tissues exposed to mechanical strain by tethering the intermediate filament cytoskeleton to the plasma membrane. While mature desmosomes are characterized by a hyperadhesive, Ca2+-independent state, they transiently loose this state during wound healing, pathogenesis and tissue regeneration. The mechanisms controlling the hyperadhesive state remain incompletely understood. Here, we show that upon Ca2+-induced keratinocyte differentiation, expression of keratin 17 (K17) prevents the formation of stable and hyperadhesive desmosomes, accompanied by a significant reduction of desmoplakin (DP), plakophilin-1 (PKP1), desmoglein-1 (Dsg1) and -3 (Dsg3) at intercellular cell borders. Atomic force microscopy revealed that both increased binding strength of desmoglein-3 molecules and amount of desmoglein-3 oligomers, known hallmarks of hyperadhesion, were reduced in K17- compared to K14-expressing cells. Importantly, overexpression of Dsg3 or DPII enhanced their localization at intercellular cell borders and increased the formation of Dsg3 oligomers, resulting in stable, hyperadhesive desmosomes despite the presence of K17. Notably, PKP1 was enriched in these desmosomes. Quantitative image analysis revealed that DPII overexpression contributed to desmosome hyperadhesion by increasing the abundance of K5/K17-positive keratin filaments in the proximity of desmosomes enriched in desmoglein-3. Thus, our data show that hyperadhesion can result from recruitment of keratin isotypes K5/K17 to desmosomes or from enhanced expression of DP and Dsg3 irrespective of keratin composition. The notion that hyperadhesive desmosomes failed to form in the absence of keratins underscores the essential role of keratins and suggest bidirectional control mechanisms at several levels.


Assuntos
Desmossomos , Queratinas , Adesão Celular , Citoesqueleto/metabolismo , Desmogleínas/metabolismo , Desmossomos/metabolismo , Queratinócitos/metabolismo , Queratinas/metabolismo
4.
Biophys J ; 121(7): 1322-1335, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35183520

RESUMO

Desmoglein (Dsg) 2 is a ubiquitously expressed desmosomal cadherin. Particularly, it is present in all cell types forming desmosomes, including epithelial cells and cardiac myocytes and is upregulated in the autoimmune skin disease pemphigus. Thus, we here characterized the binding properties of Dsg2 in more detail using atomic force microscopy (AFM). Dsg2 exhibits homophilic interactions and also heterophilic interactions with the desmosomal cadherin desmocollin (Dsc) 2, and further with the classical cadherins E-cadherin (E-Cad) and N-cadherin (N-Cad), which may be relevant for cross talk between desmosomes and adherens junctions in epithelia and cardiac myocytes. We found that all homo- and heterophilic interactions were Ca2+-dependent. All binding forces observed are in the same force range, i.e., 30 to 40 pN, except for the Dsg2/E-Cad unbinding force, which with 45 pN is significantly higher. To further characterize the nature of the interactions, we used tryptophan, a critical amino acid required for trans-interaction, and a tandem peptide (TP) designed to cross-link Dsg isoforms. TP was sufficient to prevent the tryptophan-induced loss of Dsg2 interaction with the desmosomal cadherins Dsg2 and Dsc2; however, not with the classical cadherins E-Cad and N-Cad, indicating that the interaction modes of Dsg2 with desmosomal and classical cadherins differ. TP rescued the tryptophan-induced loss of Dsg2 binding on living enterocytes, suggesting that interaction with desmosomal cadherins may be more relevant. In summary, the data suggest that the ubiquitous desmosomal cadherin Dsg2 enables the cross talk with adherens junctions by interacting with multiple binding partners with implications for proper adhesive function in healthy and diseased states.


Assuntos
Desmogleína 2 , Desmossomos , Caderinas/metabolismo , Adesão Celular , Desmogleína 2/análise , Desmogleína 2/metabolismo , Desmossomos/metabolismo , Células Epiteliais/metabolismo , Triptofano/metabolismo
5.
Biophys J ; 119(8): 1489-1500, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-33031738

RESUMO

Intercellular adhesion of keratinocytes depends critically on desmosomes that, during maturation, acquire a hyperadhesive and thus Ca2+ independent state. Here, we investigated the roles of desmoglein (Dsg) 3 and plakophilins (Pkps) in hyperadhesion. Atomic force microscopy single molecule force mappings revealed increased Dsg3 molecules but not Dsg1 molecules binding strength in murine keratinocytes. However, keratinocytes lacking Dsg3 or Pkp1 or 3 revealed reduced Ca2+ independency. In addition, Pkp1- or 3-deficient keratinocytes did not exhibit changes in Dsg3 binding on the molecular level. Further, wild-type keratinocytes showed increased levels of Dsg3 oligomers during acquisition of hyperadhesion, and Pkp1 deficiency abolished the formation of Ca2+ independent Dsg3 oligomers. In concordance, immunostaining for Dsg1 but not for Dsg3 was reduced after 24 h of Ca2+ chelation in an ex vivo human skin model, suggesting that desmosomal cadherins may have different roles during acquisition of hyperadhesion. Taken together, these data indicate that hyperadhesion may not be a state acquired by entire desmosomes but rather is paralleled by enhanced binding of specific Dsg isoforms such as Dsg3, a process for which plaque proteins including Pkp 1 and 3 are required as well.


Assuntos
Desmogleína 3 , Queratinócitos , Animais , Adesão Celular , Humanos , Camundongos , Microscopia de Força Atômica , Placofilinas , Pele
6.
Cell Mol Life Sci ; 76(17): 3465-3476, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30949721

RESUMO

Plakophilins (Pkp) are desmosomal plaque proteins crucial for desmosomal adhesion and participate in the regulation of desmosomal turnover and signaling. However, direct evidence that Pkps regulate clustering and molecular binding properties of desmosomal cadherins is missing. Here, keratinocytes lacking either Pkp1 or 3 in comparison to wild type (wt) keratinocytes were characterized with regard to their desmoglein (Dsg) 1- and 3-binding properties and their capability to induce Dsg3 clustering. As revealed by atomic force microscopy (AFM), both Pkp-deficient keratinocyte cell lines showed reduced membrane availability and binding frequency of Dsg1 and 3 at cell borders. Extracellular crosslinking and AFM cluster mapping demonstrated that Pkp1 but not Pkp3 is required for Dsg3 clustering. Accordingly, Dsg3 overexpression reconstituted cluster formation in Pkp3- but not Pkp1-deficient keratinocytes as shown by AFM and STED experiments. Taken together, these data demonstrate that both Pkp1 and 3 regulate Dsg membrane availability, whereas Pkp1 but not Pkp3 is required for Dsg3 clustering.


Assuntos
Adesão Celular , Desmogleína 1/metabolismo , Desmogleína 3/metabolismo , Placofilinas/genética , Animais , Anisomicina/farmacologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Desmogleína 1/genética , Desmogleína 3/genética , Queratinócitos/citologia , Queratinócitos/metabolismo , Camundongos , Microscopia de Força Atômica , Placofilinas/deficiência , Placofilinas/metabolismo , Transdução de Sinais , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Circ Res ; 120(8): 1305-1317, 2017 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-28289018

RESUMO

RATIONALE: The sympathetic nervous system is a major mediator of heart function. Intercalated discs composed of desmosomes, adherens junctions, and gap junctions provide the structural backbone for coordinated contraction of cardiac myocytes. OBJECTIVE: Gap junctions dynamically remodel to adapt to sympathetic signaling. However, it is unknown whether such rapid adaption also occurs for the adhesive function provided by desmosomes and adherens junctions. METHODS AND RESULTS: Atomic force microscopy revealed that ß-adrenergic signaling enhances both the number of desmoglein 2-specific interactions along cell junctions and the mean desmoglein 2-mediated binding forces, whereas N-cadherin-mediated interactions were not affected. This was accompanied by increased cell cohesion in cardiac myocyte cultures and murine heart slices. Enhanced desmoglein 2-positive contacts and increased junction length as revealed by immunofluorescence and electron microscopy reflected cAMP-induced reorganization of intercellular contacts. The mechanism underlying cAMP-mediated strengthening of desmoglein 2 binding was dependent on expression of the intercalated disc plaque protein plakoglobin (Pg) and direct phosphorylation at S665 by protein kinase A: Pg deficiency as well as overexpression of the phospho-deficient Pg-mutant S665A abrogated both cAMP-mediated junctional remodeling and increase of cohesion. Moreover, Pg knockout hearts failed to functionally adapt to adrenergic stimulation. CONCLUSIONS: Taken together, we provide first evidence for positive adhesiotropy as a new cardiac function of sympathetic signaling. Positive adhesiotropy is dependent on Pg phosphorylation at S665 by protein kinase A. This mechanism may be of high medical relevance because loss of junctional Pg is a hallmark of arrhythmogenic cardiomyopathy.


Assuntos
Adesão Celular , Comunicação Celular , Junções Comunicantes/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Adrenérgicos beta/metabolismo , Transdução de Sinais , Agonistas Adrenérgicos beta/farmacologia , Animais , Adesão Celular/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Linhagem Celular , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Desmogleína 2/metabolismo , Imunofluorescência , Junções Comunicantes/efeitos dos fármacos , Junções Comunicantes/ultraestrutura , Genótipo , Técnicas In Vitro , Masculino , Camundongos Endogâmicos BALB C , Camundongos Knockout , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/ultraestrutura , Fenótipo , Fosforilação , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Transfecção , gama Catenina/genética , gama Catenina/metabolismo
8.
Graefes Arch Clin Exp Ophthalmol ; 256(9): 1589-1597, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29931427

RESUMO

PURPOSE: To investigate integrity and characteristics of human premacular membranes (PMM) with and without standard tissue culturing using mechanical traction. METHODS: Premacular membranes were harvested from 32 eyes of 32 patients with idiopathic macular pucker during standard vitrectomy. By flat-mount preparation with phase contrast and interference microscopy, specimens were prepared for time-lapse microscopy, immunocytochemistry, and transmission electron microscopy. Sixteen of 32 specimens were held in tissue culture with tangential traction by using entomological pins. Of these, specimens of 7 eyes were analyzed with and without tissue culturing for comparison. Primary antibodies were used for myofibroblasts, hyalocytes, macro-/microglial cells, and retinal pigment epithelial and immune cells. RESULTS: Hyalocytes, macroglia, and microglia composed the main cell composition of surgically removed PMM. Correlation of time-lapse microscopy with immunofluorescence microscopy identified fast and unidirectional moving small round cells as microglia. Slowly moving elongated large cells were characterized as alpha-smooth muscle actin (α-SMA)-positive myofibroblasts. Following tissue culturing with tangential stretch, enhanced positive immunolabelling for α-SMA and integrins-αv was seen. All other labelling results were demonstrated to be similar with pre-culture conditions. Ultrastructural analysis revealed fibroblasts, myofibroblasts, and proliferation of glial cells following tissue culture. CONCLUSION: This study demonstrates abundance of fibroblasts, myofibroblasts, and glial cells in PMM from idiopathic macular pucker following tissue culture with tangential stretch application. We found enhanced contractive properties of the cultured PPM that appear to indicate transdifferentiation of the cell composition. This in vitro model may improve understanding of pathogenesis in traction maculopathies and help to establish further anti-fibrosis treatment strategies.


Assuntos
Membrana Epirretiniana/patologia , Técnicas de Cultura de Tecidos , Actinas/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Contagem de Células , Membrana Epirretiniana/cirurgia , Feminino , Fibroblastos/metabolismo , Fibroblastos/patologia , Técnica Indireta de Fluorescência para Anticorpo , Humanos , Integrinas/metabolismo , Masculino , Microscopia Eletrônica de Transmissão , Microscopia de Contraste de Fase , Pessoa de Meia-Idade , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Neuroglia/metabolismo , Neuroglia/patologia , Epitélio Pigmentado da Retina/metabolismo , Epitélio Pigmentado da Retina/patologia , Vitrectomia
9.
Ophthalmologica ; 238 Suppl 1: 1-8, 2017.
Artigo em Espanhol | MEDLINE | ID: mdl-28693020

RESUMO

Objetivo: Evaluar la rigidez de la membrana limitante interna (MLI) humana y evaluar los posibles cambios de las propiedades mecánicas tras administrar una inyección intravítrea de ocriplasmina para tratar la tracción vitreomacular. Métodos: Este estudio se compone de una serie de casos intervencionales y comparativos de 12 muestras de MLI extraídas mediante cirugía y obtenidas de forma consecutiva de 9 ojos de 9 pacientes después de someterse sin éxito a vitreólisis farmacológica con ocriplasmina. Durante el mismo periodo de tiempo, 16 muestras de otros 13 ojos sin tratamiento con ocriplasmina se obtuvieron mediante vitrectomía y sirvieron como controles. Todos los pacientes presentaron agujeros maculares o tracción vitreomacular y se sometieron a vitrectomía con disección de la MLI tanto con tinción con azul brillante (AB) como sin ella. Todas las muestras se analizaron con un microscopio de fuerza atómica con imágenes de las regiones de 25 × 25 µm. En todas las muestras, se analizaron tanto la parte de la retina como la del vítreo de la MLI. Resultados: La microscopia de fuerza atómica no reveló diferencias significativas en cuanto a elasticidad de las muestras de MLI extraídas de ojos con o sin tratamiento con ocriplasmina. Las áreas onduladas de la parte de la retina presentaron una mayor rigidez que la parte del vítreo de la MLI. La cartografía topográfica tanto de la parte del vítreo como de la retina de la MLI no mostró ninguna alteración aparente de la morfología en ojos tratados con ocriplasmina en comparación con los ojos no tratados. La tinción con azul brillante conllevó un aumento de la rigidez tisular. Conclusiones: Las inyecciones intravítreas de ocriplasmina no varían las propiedades biomecánicas de la MLI humana. No existen pruebas de un posible efecto enzimático que interfiera con la rigidez de esta membrana basal.

10.
J Biol Chem ; 290(40): 24574-91, 2015 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-26292218

RESUMO

Human epithelial cell adhesion molecule (HEPCAM) is a tumor-associated antigen frequently expressed in carcinomas, which promotes proliferation after regulated intramembrane proteolysis. Here, we describe extracellular shedding of HEPCAM at two α-sites through a disintegrin and metalloprotease (ADAM) and at one ß-site through BACE1. Transmembrane cleavage by γ-secretase occurs at three γ-sites to generate extracellular Aß-like fragments and at two ϵ-sites to release human EPCAM intracellular domain HEPICD, which is efficiently degraded by the proteasome. Mapping of cleavage sites onto three-dimensional structures of HEPEX cis-dimer predicted conditional availability of α- and ß-sites. Endocytosis of HEPCAM warrants acidification in cytoplasmic vesicles to dissociate protein cis-dimers required for cleavage by BACE1 at low pH values. Intramembrane cleavage sites are accessible and not part of the structurally important transmembrane helix dimer crossing region. Surprisingly, neither chemical inhibition of cleavage nor cellular knock-out of HEPCAM using CRISPR-Cas9 technology impacted the adhesion of carcinoma cell lines. Hence, a direct function of HEPCAM as an adhesion molecule in carcinoma cells is not supported and appears to be questionable.


Assuntos
Antígenos de Neoplasias/metabolismo , Moléculas de Adesão Celular/metabolismo , Aminoácidos/química , Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Sítios de Ligação , Adesão Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Separação Celular , Endocitose , Molécula de Adesão da Célula Epitelial , Citometria de Fluxo , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Multimerização Proteica , Estrutura Terciária de Proteína , Proteólise
11.
Cell Mol Life Sci ; 72(24): 4885-97, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26115704

RESUMO

Desmosomes provide strong intercellular cohesion essential for the integrity of cells and tissues exposed to continuous mechanical stress. For desmosome assembly, constitutively synthesized desmosomal cadherins translocate to the cell-cell border, cluster and mature in the presence of Ca(2+) to stable cell contacts. As adherens junctions precede the formation of desmosomes, we investigated in this study the relationship between the classical cadherin E-cadherin and the desmosomal cadherin Desmoglein 3 (Dsg3), the latter of which is indispensable for cell-cell adhesion in keratinocytes. By using autoantibodies from patients with the blistering skin disease pemphigus vulgaris (PV), we showed in loss of function studies that E-cadherin compensates for effects of desmosomal disassembly. Overexpression of E-cadherin reduced the loss of cell cohesion induced by PV autoantibodies and attenuated activation of p38 MAPK. Silencing of E-cadherin abolished the localization of Dsg3 at the membrane and resulted in a shift of Dsg3 from the cytoskeletal to the non-cytoskeletal protein pool which conforms to the notion that E-cadherin regulates desmosome assembly. Mechanistically, we identified a complex consisting of extradesmosomal Dsg3, E-cadherin, ß-catenin and Src and that the stability of this complex is regulated by Src. Moreover, Dsg3 and E-cadherin are phosphorylated on tyrosine residues in a Src-dependent manner and Src activity is required for recruiting Dsg3 to the cytoskeletal pool as well as for desmosome maturation towards a Ca(2+)-insensitive state. Our data provide new insights into the role of E-cadherin and the contribution of Src signaling for formation and maintenance of desmosomal junctions.


Assuntos
Caderinas/metabolismo , Desmogleína 3/metabolismo , Desmossomos/fisiologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Caderinas/genética , Caderinas/fisiologia , Adesão Celular/genética , Linhagem Celular , Desmogleína 3/análise , Desmogleína 3/fisiologia , Desmossomos/metabolismo , Inativação Gênica , Queratinócitos/citologia , Queratinócitos/metabolismo , Modelos Moleculares , Proteínas Proto-Oncogênicas pp60(c-src)/genética , Proteínas Proto-Oncogênicas pp60(c-src)/fisiologia
12.
Ophthalmologica ; 235(4): 233-40, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27120551

RESUMO

PURPOSE: To assess the stiffness of the human internal limiting membrane (ILM) and evaluate potential changes of mechanical properties following intravitreal ocriplasmin injection for vitreomacular traction. METHODS: This is an interventional comparative case series of 12 surgically excised ILM specimens consecutively obtained from 9 eyes of 9 patients after unsuccessful pharmacologic vitreolysis with ocriplasmin. During the same time period, 16 specimens from 13 other eyes without ocriplasmin treatment were harvested during vitrectomy and served as controls. All patients presented with macular holes or vitreomacular traction and underwent vitrectomy with ILM peeling either with or without brilliant blue (BB) staining. All specimens were analyzed using atomic force microscopy with scan regions of 25 × 25 µm. In all specimens, both the retinal side and vitreal side of the ILM were analyzed. RESULTS: Atomic force microscopy revealed no significant differences in elasticity of ILM specimens removed from eyes with or without ocriplasmin treatment. Undulated areas of the retinal side presented stiffer than the vitreal side of the ILM. Topographical mapping of both the vitreal and retinal side of the ILM showed no apparent alteration of the morphology in ocriplasmin-treated eyes compared to untreated eyes. Staining with BB resulted in an increase of tissue stiffness. CONCLUSIONS: Intravitreal injection of ocriplasmin does not change biomechanical properties of the human ILM. There is no evidence of a potential enzymatic effect of ocriplasmin interfering with the stiffness of this basement membrane.


Assuntos
Membrana Epirretiniana/terapia , Fibrinolisina/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Retina/fisiopatologia , Idoso , Fenômenos Biomecânicos , Membrana Epirretiniana/diagnóstico , Membrana Epirretiniana/fisiopatologia , Feminino , Seguimentos , Humanos , Injeções Intravítreas , Masculino , Retina/patologia , Estudos Retrospectivos , Tomografia de Coerência Óptica , Acuidade Visual , Vitrectomia
13.
Nanomedicine ; 11(3): 511-20, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25510735

RESUMO

Desmosomes provide strong cell-cell adhesion which is crucial for the integrity of tissues such as the epidermis. However, nothing is known about the distribution and binding properties of desmosomal adhesion molecules on keratinocytes. Here we used atomic force microscopy (AFM) to simultaneously visualize the topography of living human keratinocytes and the distribution and binding properties of the desmosomal adhesion molecule desmoglein 3 (Dsg3). Using recombinant Dsg3 as sensor, binding events were detectable diffusely and in clusters on the cell surface and at areas of cell-cell contact. This was blocked by removing Ca(2+) and by addition of Dsg3-specific antibodies indicating homophilic Dsg3 binding. Binding forces of Dsg3 molecules were lower on the cell surface compared to areas of cell-cell contact. Our data for the first time directly demonstrate the occurrence of Dsg3 molecules outside of desmosomes and show that Dsg3 adhesive properties differ depending on their localization. From the clinical editor: Using atomic force microscopy in the study of keratinocytes, this study directly demonstrates the occurrence of desmoglein 3 molecules outside of desmosomes and reveales that the adhesive properties of these molecules do differ depending on their localization.


Assuntos
Desmogleína 3/metabolismo , Desmossomos/metabolismo , Desmossomos/ultraestrutura , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Microscopia de Força Atômica , Animais , Cálcio/metabolismo , Adesão Celular/fisiologia , Linhagem Celular , Humanos , Camundongos
14.
J Invest Dermatol ; 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38677661

RESUMO

During differentiation, keratinocytes acquire a strong, hyper-adhesive state, where desmosomal cadherins interact calcium ion independently. Previous data indicate that hyper-adhesion protects keratinocytes from pemphigus vulgaris autoantibody-induced loss of intercellular adhesion, although the underlying mechanism remains to be elucidated. Thus, in this study, we investigated the effect of hyper-adhesion on pemphigus vulgaris autoantibody-induced direct inhibition of desmoglein (DSG) 3 interactions by atomic force microscopy. Hyper-adhesion abolished loss of intercellular adhesion and corresponding morphological changes of all pathogenic antibodies used. Pemphigus autoantibodies putatively targeting several parts of the DSG3 extracellular domain and 2G4, targeting a membrane-proximal domain of DSG3, induced direct inhibition of DSG3 interactions only in non-hyper-adhesive keratinocytes. In contrast, AK23, targeting the N-terminal extracellular domain 1 of DSG3, caused direct inhibition under both adhesive states. However, antibody binding to desmosomal cadherins was not different between the distinct pathogenic antibodies used and was not changed during acquisition of hyper-adhesion. In addition, heterophilic DSC3-DSG3 and DSG2-DSG3 interactions did not cause reduced susceptibility to direct inhibition under hyper-adhesive condition in wild-type keratinocytes. Taken together, the data suggest that hyper-adhesion reduces susceptibility to autoantibody-induced direct inhibition in dependency on autoantibody-targeted extracellular domain but also demonstrate that further mechanisms are required for the protective effect of desmosomal hyper-adhesion in pemphigus vulgaris.

15.
J Invest Dermatol ; 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38642796

RESUMO

Pemphigus is a severe blistering disease caused by autoantibodies primarily against the desmosomal cadherins desmoglein (DSG)1 and DSG3 which impair desmosome integrity. Especially for the acute phase, additional treatment options allowing to reduce corticosteroids would fulfill an unmet medical need. Here, we provide evidence that epidermal growth factor receptor (EGFR) inhibition by erlotinib ameliorates pemphigus vulgaris immunoglobulin G (PV-IgG) -induced acantholysis in intact human epidermis. PV-IgG caused phosphorylation of EGFR (Y845) and SRC in human epidermis. In line with that, a phosphotyrosine kinome analysis revealed a robust response associated with EGFR and SRC family kinase signaling in response to PV-IgG but not pemphigus foliaceus autoantibodies. Erlotinib inhibited PV-IgG-induced epidermal blistering and EGFR phosphorylation, loss of desmosomes as well as ultrastructural alterations of desmosome size, plaque symmetry, keratin filament insertion and restored the desmosome midline considered as hallmark of mature desmosomes. Erlotinib enhanced both single molecule DSG3 binding frequency and strength and delayed DSG3 fluorescence recovery supporting that EGFR inhibition increases DSG3 availability and cytoskeletal anchorage. Our data indicate that EGFR is a promising target for pemphigus therapy due to its link to several signaling pathways known to be involved in pemphigus pathogenesis.

16.
Acta Physiol (Oxf) ; 238(4): e14006, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37243909

RESUMO

Regulation of cadherin-mediated cell adhesion is crucial not only for maintaining tissue integrity and barrier function in the endothelium and epithelium but also for electromechanical coupling within the myocardium. Therefore, loss of cadherin-mediated adhesion causes various disorders, including vascular inflammation and desmosome-related diseases such as the autoimmune blistering skin dermatosis pemphigus and arrhythmogenic cardiomyopathy. Mechanisms regulating cadherin-mediated binding contribute to the pathogenesis of diseases and may also be used as therapeutic targets. Over the last 30 years, cyclic adenosine 3',5'-monophosphate (cAMP) has emerged as one of the master regulators of cell adhesion in endothelium and, more recently, also in epithelial cells as well as in cardiomyocytes. A broad spectrum of experimental models from vascular physiology and cell biology applied by different generations of researchers provided evidence that not only cadherins of endothelial adherens junctions (AJ) but also desmosomal contacts in keratinocytes and the cardiomyocyte intercalated discs are central targets in this scenario. The molecular mechanisms involve protein kinase A- and exchange protein directly activated by cAMP-mediated regulation of Rho family GTPases and S665 phosphorylation of the AJ and desmosome adaptor protein plakoglobin. In line with this, phosphodiesterase 4 inhibitors such as apremilast have been proposed as a therapeutic strategy to stabilize cadherin-mediated adhesion in pemphigus and may also be effective to treat other disorders where cadherin-mediated binding is compromised.


Assuntos
Pênfigo , Humanos , Pênfigo/metabolismo , Pênfigo/patologia , Desmossomos/metabolismo , Adesão Celular/fisiologia , Caderinas/metabolismo , Caderinas/farmacologia , Miocárdio/metabolismo , Epitélio/metabolismo , Endotélio/metabolismo
17.
Nat Commun ; 14(1): 116, 2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36624106

RESUMO

Pemphigus vulgaris is a life-threatening blistering skin disease caused by autoantibodies destabilizing desmosomal adhesion. Current therapies focus on suppression of autoantibody formation and thus treatments directly stabilizing keratinocyte adhesion would fulfill an unmet medical need. We here demonstrate that apremilast, a phosphodiesterase 4 inhibitor used in psoriasis, prevents skin blistering in pemphigus vulgaris. Apremilast abrogates pemphigus autoantibody-induced loss of keratinocyte cohesion in ex-vivo human epidermis, cultured keratinocytes in vitro and in vivo in mice. In parallel, apremilast inhibits keratin retraction as well as desmosome splitting, induces phosphorylation of plakoglobin at serine 665 and desmoplakin assembly into desmosomal plaques. We established a plakoglobin phospho-deficient mouse model that reveals fragile epidermis with altered organization of keratin filaments and desmosomal cadherins. In keratinocytes derived from these mice, intercellular adhesion is impaired and not rescued by apremilast. These data identify an unreported mechanism of desmosome regulation and propose that apremilast stabilizes keratinocyte adhesion and is protective in pemphigus.


Assuntos
Pênfigo , Humanos , Camundongos , Animais , Pênfigo/tratamento farmacológico , gama Catenina , Adesão Celular , Queratinócitos , Epiderme , Vesícula , Autoanticorpos , Queratinas , Desmossomos
19.
Am J Pathol ; 179(4): 1905-16, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21864491

RESUMO

Pemphigus vulgaris (PV) is an autoimmune disease of the skin and mucous membranes and is characterized by development of autoantibodies against the desmosomal cadherins desmoglein (Dsg) 3 and Dsg1 and formation of intraepidermal suprabasal blisters. Depletion of Dsg3 is a critical mechanism in PV pathogenesis. Because we did not detect reduced Dsg3 levels in keratinocytes cultured for longer periods under high-Ca(2+) conditions, we hypothesized that Dsg depletion depends on Ca(2+)-mediated keratinocyte differentiation. Our data indicate that depletion of Dsg3 occurs specifically in deep epidermal layers both in skin of patients with PV and in an organotypic raft model of human epidermis incubated using IgG fractions from patients with PV. In addition, Dsg3 depletion and loss of Dsg3 staining were prominent in cultured primary keratinocytes and in HaCaT cells incubated in high-Ca(2+) medium for 3 days, but were less pronounced in HaCaT cultures after 8 days. These effects were dependent on protein kinase C signaling because inhibition of protein kinase C blunted both Dsg3 depletion and loss of intercellular adhesion. Moreover, protein kinase C inhibition blocked suprabasal Dsg3 depletion in cultured human epidermis and blister formation in a neonatal mouse model. Considered together, our data indicate a contribution of Dsg depletion to PV pathogenesis dependent on Ca(2+)-induced differentiation. Furthermore, prominent depletion in basal epidermal layers may contribute to the suprabasal cleavage plane observed in PV.


Assuntos
Cálcio/farmacologia , Diferenciação Celular/efeitos dos fármacos , Desmogleína 3/deficiência , Epiderme/efeitos dos fármacos , Epiderme/patologia , Pênfigo/metabolismo , Pênfigo/patologia , Animais , Animais Recém-Nascidos , Vesícula/complicações , Vesícula/patologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Desmogleína 1/metabolismo , Desmogleína 2/metabolismo , Desmogleína 3/metabolismo , Modelos Animais de Doenças , Epiderme/metabolismo , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/enzimologia , Queratinócitos/patologia , Camundongos , Pênfigo/enzimologia , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
20.
J Immunol ; 185(11): 6831-8, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-21037102

RESUMO

Pemphigus vulgaris (PV) is an autoimmune skin disease mediated by autoantibodies directed against the cadherin-type cell adhesion molecules desmoglein (Dsg) 3 and Dsg1 and is characterized by loss of keratinocyte cohesion and epidermal blistering. Several intracellular signaling pathways, such as p38MAPK activation and RhoA inhibition, have been demonstrated to be altered following autoantibody binding and to be causally involved in loss of keratinocyte cohesion. In this paper, we demonstrate that cAMP-mediated signaling completely prevented blister formation in a neonatal pemphigus mouse model. Furthermore, elevation of cellular cAMP levels by forskolin/rolipram or ß receptor agonist isoproterenol blocked loss of intercellular adhesion, depletion of cellular Dsg3, and morphologic changes induced by Ab fractions of PV patients (PV-IgG) in cultured keratinocytes. Incubation with PV-IgG alone increased cAMP levels, indicating that cAMP elevation may be a cellular response pathway to strengthen intercellular adhesion. Our data furthermore demonstrate that this protective pathway may involve protein kinase A signaling because protein kinase A inhibition attenuated recovery from PV-IgG-induced cell dissociation. Finally, cAMP increase interfered with PV-IgG-induced signaling by preventing p38MAPK activation both in vitro and in vivo. Taken together, our data provide insights into the cellular response mechanisms following pemphigus autoantibody binding and point to a possible novel and more specific therapeutic approach in pemphigus.


Assuntos
Autoanticorpos/fisiologia , AMP Cíclico/fisiologia , Pênfigo/imunologia , Pênfigo/prevenção & controle , Transdução de Sinais/imunologia , Animais , Animais Recém-Nascidos , Autoanticorpos/biossíntese , Linhagem Celular Transformada , AMP Cíclico/biossíntese , Modelos Animais de Doenças , Epiderme/imunologia , Epiderme/metabolismo , Epiderme/patologia , Humanos , Imunoglobulina G/biossíntese , Imunoglobulina G/fisiologia , Camundongos , Camundongos Endogâmicos BALB C , Pênfigo/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa