Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Insect Sci ; 23(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587059

RESUMO

The insecticidal and repellent effect of essential oil isolated from fresh leaves of Porophyllum linaria on maize weevil was evaluated, as well as the effect on the grain germination after treated. In total, 28 constituents were identified by gas chromatography coupled with mass spectrometry accounting for 99.86% of whole essential oil. The main majority compounds were ß-myrcene (41.94%), D-limonene (20.29%), and estragole (20.03%). Contact toxicity significantly increased with dose and time after treatment. With the 800 ppm (highest concentration), the mortality (%) obtained for the tenth and fifteenth day was 43 and 82%, respectively, whereas with 50 ppm (lowest concentration) 30% mortality was obtained at the end of the experiment (fifteenth day). At 15 d (end of the experiment), the LC50 y LC90 were obtained with values of 329.01 ± 44.35 y 1058.86 ± 117.76 ppm, respectively. For a concentration of 800 ppm, a selection index of zero was obtained, indicating the preference of the pest to the untreated maize (control). The maize grains germination test showed a significant reduction both in the length of hypocotyl and radicle of maize grain. So, in the highest dose, the hypocotyl and radicle length was 1.40 ± 0.34 and 9.14 ± 0.55 cm, respectively, whereas the control group registered 3.28 ± 0.39 and 13.02 ± 0.97 cm, respectively. This finding is promising since as it could result in the identification of botanical substances capable of suppressing maize weevil, Sitophilus zeamais development.


Assuntos
Asteraceae , Besouros , Inseticidas , Linaria , Óleos Voláteis , Gorgulhos , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Inseticidas/farmacologia , Inseticidas/análise
2.
Plants (Basel) ; 13(18)2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39339607

RESUMO

Currently, the excessive use of pesticides has generated environmental pollution and harmful effects on human health. The controlled release of active ingredients through the use of nanomaterials (NMs) appears to reduce human exposure and ecosystem alteration. Although the use of NMs can offer an alternative to traditional methods of disease diagnosis and control, it is necessary to review the current approach to the application of these NMs. This review describes the most recent and significant advances in using NMs for diagnosing and treating plant diseases (bacteria, phytopathogenic fungi, viruses, and phytopathogenic nematodes) in cultivated plants. Most studies have focused on reducing, delaying, or eliminating bacteria, fungi, viruses, and nematodes in plants. Both metallic (including metal oxides) and organic nanoparticles (NPs) and composites are widely used in diagnosing and controlling plant diseases due to their biocompatibility and ease of synthesis. Few studies have been carried out with regard to carbon-based NPs due to their toxicity, so future studies should address the development of detection tools, ecological and economic impacts, and human health. The synergistic effect of NMs as fertilizers and pesticides opens new areas of knowledge on the mechanisms of action (plant-pathogen-NMs interaction), the interaction of NMs with nutrients, the effects on plant metabolism, and the traceability of NMs to implement sustainable approaches. More studies are needed involving in vivo models under international regulations to ensure their safety. There is still controversy in the release of NMs into the environment because they could threaten the stability and functioning of biological systems, so research in this area needs to be improved.

3.
J Fungi (Basel) ; 10(7)2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-39057351

RESUMO

Mosquitoes, as insect vectors, play a crucial role in transmitting viruses and parasites, leading to millions of human deaths in tropical and subtropical regions worldwide. This study aimed to evaluate the effects of ethanolic extracts of three species within the genus Myrothecium (M. roridum, M. dimerum, and M. nivale) on Aedes aegypti mosquito larvae to assess the inhibitory effect on growth and development, as well as to determine mortality. We quantify the average lethal concentrations and provide a qualitative characterization of the chemical groups responsible for their potential. Phytochemical screening revealed the presence of alkaloids, flavonoids, and terpenoids in the ethanolic extracts of the three fungal species. Tannins were found only in the extracts of M. dimerum and M. roridum. We observed a clear dependence of the effects of the crude extracts on mosquito larvae on the concentrations used and the duration of exposure. The toxic effect was observed after 48 h at a concentration of 800 ppm for both M. dimerum and M. nivale, while M. roridum showed effectiveness after 72 h. All three species within the genus Myrothecium exhibited 100% biological activity after 72 h of exposure at 600 ppm. At lower concentrations, there was moderate growth and development inhibitory activity in the insect life cycle. The study highlights the effectiveness of crude Myrothecium extracts in combating mosquito larvae, with effects becoming apparent between 48 and 72 h of exposure. This initial approach underscores the potential of the fungus's secondary metabolites for further in-depth analysis of their individual effects or synergies between them.

4.
Front Insect Sci ; 4: 1385884, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38947219

RESUMO

Calliphoridae are widespread globally and can inhabit a variety of habitats. In this brief report, we assessed the appeal of Chrysomya rufifacies to resources that were previously inhabited by Lucilia sericata and L. cuprina, both common carrion colonizers. Two hundred adult male and female (1:1) C. rufifacies were released under controlled conditions into clear plastic cages (45 x 45 x 45 cm) with four types of substrates: beef-liver; liver with 100 third-instar larvae of L. cuprina; (III) liver containing 100 third-instar larvae of L. sericata; and liver containing 100 third-instar larvae of C. rufifacies. Each substrate was left in place for 24 hours at the end of a tube connected to the cage, where sticky traps were positioned to capture flies that might have been attracted to a specific substrate. The results indicate variations in the attraction of flies to different types of livers colonized by larvae of various species. It is suggested that flies may have specific preferences depending on the species of larvae present in the substrate. The liver without larvae was the preferred choice, while beef liver with C. rufifacies larvae was the least attractive. Results of statistical tests indicated that there is independence between attractiveness preference and the presence of C. rufifacies flies. Although there is a trend among certain levels of the variables in the correspondence analysis, these relationships are not statistically significant. However, they indicate specific patterns of association between different groups of flies and species of larvae. This study demonstrated that C. rufifacies does not show reduced attraction to any of the resources. A tetrahedron olfactometer device has been used for the first time in a behavioral study of C. rufifacies flies. This may enable future studies to enhance the understanding of fly behavior.

5.
Insects ; 14(4)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37103127

RESUMO

The research aims to investigate the mortality effect of essential oil from Piper cordoncillo var. apazoteanum, an endemic plant from Campeche, Mexico, on early second-instar Aedes aegypti larvae; it also aims to identify the volatile compounds present in the fresh leaves of the plant. To test the effectiveness of the essential oil, we followed World Health Organization Standard Procedures. Larvae were observed for 17 consecutive days after treatment to determine the mortality and growth-inhibitory effect exerted by the essential oil. The results showed that the essential oil was effective in controlling mosquito populations. At a concentration of 800 ppm, the oil achieved an effectiveness rate of 70.00 ± 8.16% after 24 h, increasing to 100.00 ± 0.01% mortality after 72 h. With a concentration of 400 ppm, the effectiveness was 98.33 ± 0.17% by the end of the experiment. Furthermore, the obtained results demonstrated that the LC50 value was 61.84 ± 6.79 ppm, while the LC90 value was 167.20 ± 11.49 ppm. Essential oil concentrations inhibited the growth of immature insect stages, with concentrations between 800-100 ppm demonstrating very high inhibitory activity, and the lowest concentration of 50 ppm showing high inhibitory activity. The study also identified 24 chemical compounds representing 86.71% of the volatile compound composition of the fresh leaves of P. cordoncillo; the most abundant compounds were Safrole, Caryophyllene oxide, E-Nerolidol, and Calarene epoxide. The method used to extract the volatile compounds, solvent-free microwave extraction (SFME), is a promising alternative to traditional methods that avoids the use of potentially harmful solvents, making it more ecologically friendly and potentially safer for professionals handling the extracted compounds. Overall, the study demonstrates the potential of P. cordoncillo essential oil as an effective means of controlling mosquito populations, and provides valuable information on the chemical composition of the plant.Moreover, our study is the first to report on the biological activity and chemical composition of P. cordoncillo worldwide.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa