Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 538(7624): 201-206, 2016 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-27654912

RESUMO

Here we report the Simons Genome Diversity Project data set: high quality genomes from 300 individuals from 142 diverse populations. These genomes include at least 5.8 million base pairs that are not present in the human reference genome. Our analysis reveals key features of the landscape of human genome variation, including that the rate of accumulation of mutations has accelerated by about 5% in non-Africans compared to Africans since divergence. We show that the ancestors of some pairs of present-day human populations were substantially separated by 100,000 years ago, well before the archaeologically attested onset of behavioural modernity. We also demonstrate that indigenous Australians, New Guineans and Andamanese do not derive substantial ancestry from an early dispersal of modern humans; instead, their modern human ancestry is consistent with coming from the same source as that of other non-Africans.


Assuntos
Variação Genética/genética , Genoma Humano/genética , Genômica , Taxa de Mutação , Filogenia , Grupos Raciais/genética , Animais , Austrália , População Negra/genética , Conjuntos de Dados como Assunto , Genética Populacional , História Antiga , Migração Humana/história , Humanos , Havaiano Nativo ou Outro Ilhéu do Pacífico/genética , Homem de Neandertal/genética , Nova Guiné , Análise de Sequência de DNA , Especificidade da Espécie , Fatores de Tempo
2.
Am J Hum Genet ; 103(6): 918-929, 2018 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-30526867

RESUMO

The Indus Valley has been the backdrop for several historic and prehistoric population movements between South Asia and West Eurasia. However, the genetic structure of present-day populations from Northwest India is poorly characterized. Here we report new genome-wide genotype data for 45 modern individuals from four Northwest Indian populations, including the Ror, whose long-term occupation of the region can be traced back to the early Vedic scriptures. Our results suggest that although the genetic architecture of most Northwest Indian populations fits well on the broader North-South Indian genetic cline, culturally distinct groups such as the Ror stand out by being genetically more akin to populations living west of India; such populations include prehistorical and early historical ancient individuals from the Swat Valley near the Indus Valley. We argue that this affinity is more likely a result of genetic continuity since the Bronze Age migrations from the Steppe Belt than a result of recent admixture. The observed patterns of genetic relationships both with modern and ancient West Eurasians suggest that the Ror can be used as a proxy for a population descended from the Ancestral North Indian (ANI) population. Collectively, our results show that the Indus Valley populations are characterized by considerable genetic heterogeneity that has persisted over thousands of years.


Assuntos
Etnicidade/genética , Variação Genética/genética , Ásia , Emigração e Imigração , Genética Populacional/métodos , Estudo de Associação Genômica Ampla/métodos , Genótipo , Geografia , Humanos , Índia
3.
Nature ; 505(7481): 87-91, 2014 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-24256729

RESUMO

The origins of the First Americans remain contentious. Although Native Americans seem to be genetically most closely related to east Asians, there is no consensus with regard to which specific Old World populations they are closest to. Here we sequence the draft genome of an approximately 24,000-year-old individual (MA-1), from Mal'ta in south-central Siberia, to an average depth of 1×. To our knowledge this is the oldest anatomically modern human genome reported to date. The MA-1 mitochondrial genome belongs to haplogroup U, which has also been found at high frequency among Upper Palaeolithic and Mesolithic European hunter-gatherers, and the Y chromosome of MA-1 is basal to modern-day western Eurasians and near the root of most Native American lineages. Similarly, we find autosomal evidence that MA-1 is basal to modern-day western Eurasians and genetically closely related to modern-day Native Americans, with no close affinity to east Asians. This suggests that populations related to contemporary western Eurasians had a more north-easterly distribution 24,000 years ago than commonly thought. Furthermore, we estimate that 14 to 38% of Native American ancestry may originate through gene flow from this ancient population. This is likely to have occurred after the divergence of Native American ancestors from east Asian ancestors, but before the diversification of Native American populations in the New World. Gene flow from the MA-1 lineage into Native American ancestors could explain why several crania from the First Americans have been reported as bearing morphological characteristics that do not resemble those of east Asians. Sequencing of another south-central Siberian, Afontova Gora-2 dating to approximately 17,000 years ago, revealed similar autosomal genetic signatures as MA-1, suggesting that the region was continuously occupied by humans throughout the Last Glacial Maximum. Our findings reveal that western Eurasian genetic signatures in modern-day Native Americans derive not only from post-Columbian admixture, as commonly thought, but also from a mixed ancestry of the First Americans.


Assuntos
Povo Asiático/genética , Genoma Humano/genética , Indígenas Norte-Americanos/etnologia , Indígenas Norte-Americanos/genética , Filogenia , População Branca/genética , Animais , Ásia/etnologia , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Emigração e Imigração , Fluxo Gênico/genética , Genoma Mitocondrial/genética , Haplótipos/genética , Humanos , Indígenas Norte-Americanos/classificação , Masculino , Filogeografia , Sibéria/etnologia , Esqueleto
4.
Am J Hum Genet ; 99(1): 163-73, 2016 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-27392075

RESUMO

The paternal haplogroup (hg) N is distributed from southeast Asia to eastern Europe. The demographic processes that have shaped the vast extent of this major Y chromosome lineage across numerous linguistically and autosomally divergent populations have previously been unresolved. On the basis of 94 high-coverage re-sequenced Y chromosomes, we establish and date a detailed hg N phylogeny. We evaluate geographic structure by using 16 distinguishing binary markers in 1,631 hg N Y chromosomes from a collection of 6,521 samples from 56 populations. The more southerly distributed sub-clade N4 emerged before N2a1 and N3, found mostly in the north, but the latter two display more elaborate branching patterns, indicative of regional contrasts in recent expansions. In particular, a number of prominent and well-defined clades with common N3a3'6 ancestry occur in regionally dissimilar northern Eurasian populations, indicating almost simultaneous regional diversification and expansion within the last 5,000 years. This patrilineal genetic affinity is decoupled from the associated higher degree of language diversity.


Assuntos
Cromossomos Humanos Y/genética , Haplótipos/genética , Idioma , Ásia , Europa (Continente) , Humanos , Filogeografia , Fatores de Tempo
5.
Hum Genet ; 137(2): 129-139, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29356938

RESUMO

The rugged topography of the Himalayan region has hindered large-scale human migrations, population admixture and assimilation. Such complexity in geographical structure might have facilitated the existence of several small isolated communities in this region. We have genotyped about 850,000 autosomal markers among 35 individuals belonging to the four major populations inhabiting the Himalaya and adjoining regions. In addition, we have genotyped 794 individuals belonging to 16 ethnic groups from the same region, for uniparental (mitochondrial and Y chromosomal DNA) markers. Our results in the light of various statistical analyses suggest a closer link of the Himalayan and adjoining populations to East Asia than their immediate geographical neighbours in South Asia. Allele frequency-based analyses likely support the existence of a specific ancestry component in the Himalayan and adjoining populations. The admixture time estimate suggests a recent westward migration of populations living to the East of the Himalaya. Furthermore, the uniparental marker analysis among the Himalayan and adjoining populations reveal the presence of East, Southeast and South Asian genetic signatures. Interestingly, we observed an antagonistic association of Y chromosomal haplogroups O3 and D clines with the longitudinal distance. Thus, we summarise that studying the Himalayan and adjoining populations is essential for a comprehensive reconstruction of the human evolutionary and ethnolinguistic history of eastern Eurasia.


Assuntos
Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Variação Genética , Genética Populacional , Ásia , Povo Asiático , Etnicidade/genética , Frequência do Gene , Haplótipos/genética , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único/genética
6.
PLoS Genet ; 11(4): e1005068, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25898006

RESUMO

The Turkic peoples represent a diverse collection of ethnic groups defined by the Turkic languages. These groups have dispersed across a vast area, including Siberia, Northwest China, Central Asia, East Europe, the Caucasus, Anatolia, the Middle East, and Afghanistan. The origin and early dispersal history of the Turkic peoples is disputed, with candidates for their ancient homeland ranging from the Transcaspian steppe to Manchuria in Northeast Asia. Previous genetic studies have not identified a clear-cut unifying genetic signal for the Turkic peoples, which lends support for language replacement rather than demic diffusion as the model for the Turkic language's expansion. We addressed the genetic origin of 373 individuals from 22 Turkic-speaking populations, representing their current geographic range, by analyzing genome-wide high-density genotype data. In agreement with the elite dominance model of language expansion most of the Turkic peoples studied genetically resemble their geographic neighbors. However, western Turkic peoples sampled across West Eurasia shared an excess of long chromosomal tracts that are identical by descent (IBD) with populations from present-day South Siberia and Mongolia (SSM), an area where historians center a series of early Turkic and non-Turkic steppe polities. While SSM matching IBD tracts (> 1cM) are also observed in non-Turkic populations, Turkic peoples demonstrate a higher percentage of such tracts (p-values ≤ 0.01) compared to their non-Turkic neighbors. Finally, we used the ALDER method and inferred admixture dates (~9th-17th centuries) that overlap with the Turkic migrations of the 5th-16th centuries. Thus, our results indicate historical admixture among Turkic peoples, and the recent shared ancestry with modern populations in SSM supports one of the hypothesized homelands for their nomadic Turkic and related Mongolic ancestors.


Assuntos
Cromossomos/genética , Fluxo Gênico , Genética Populacional , Migração Humana/história , Ásia , Povo Asiático/genética , Povo Asiático/história , China , Cromossomos Humanos Y/genética , Etnicidade/genética , Etnicidade/história , Europa (Continente) , Genótipo , História do Século XV , História do Século XVI , História do Século XVII , História Medieval , Humanos , Idioma , Oriente Médio , Mongólia , Polimorfismo de Nucleotídeo Único/genética , Sibéria
7.
Am J Hum Genet ; 95(5): 584-589, 2014 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-25449608

RESUMO

Arctic populations live in an environment characterized by extreme cold and the absence of plant foods for much of the year and are likely to have undergone genetic adaptations to these environmental conditions in the time they have been living there. Genome-wide selection scans based on genotype data from native Siberians have previously highlighted a 3 Mb chromosome 11 region containing 79 protein-coding genes as the strongest candidates for positive selection in Northeast Siberians. However, it was not possible to determine which of the genes might be driving the selection signal. Here, using whole-genome high-coverage sequence data, we identified the most likely causative variant as a nonsynonymous G>A transition (rs80356779; c.1436C>T [p.Pro479Leu] on the reverse strand) in CPT1A, a key regulator of mitochondrial long-chain fatty-acid oxidation. Remarkably, the derived allele is associated with hypoketotic hypoglycemia and high infant mortality yet occurs at high frequency in Canadian and Greenland Inuits and was also found at 68% frequency in our Northeast Siberian sample. We provide evidence of one of the strongest selective sweeps reported in humans; this sweep has driven this variant to high frequency in circum-Arctic populations within the last 6-23 ka despite associated deleterious consequences, possibly as a result of the selective advantage it originally provided to either a high-fat diet or a cold environment.

8.
Nature ; 466(7303): 238-42, 2010 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-20531471

RESUMO

Contemporary Jews comprise an aggregate of ethno-religious communities whose worldwide members identify with each other through various shared religious, historical and cultural traditions. Historical evidence suggests common origins in the Middle East, followed by migrations leading to the establishment of communities of Jews in Europe, Africa and Asia, in what is termed the Jewish Diaspora. This complex demographic history imposes special challenges in attempting to address the genetic structure of the Jewish people. Although many genetic studies have shed light on Jewish origins and on diseases prevalent among Jewish communities, including studies focusing on uniparentally and biparentally inherited markers, genome-wide patterns of variation across the vast geographic span of Jewish Diaspora communities and their respective neighbours have yet to be addressed. Here we use high-density bead arrays to genotype individuals from 14 Jewish Diaspora communities and compare these patterns of genome-wide diversity with those from 69 Old World non-Jewish populations, of which 25 have not previously been reported. These samples were carefully chosen to provide comprehensive comparisons between Jewish and non-Jewish populations in the Diaspora, as well as with non-Jewish populations from the Middle East and north Africa. Principal component and structure-like analyses identify previously unrecognized genetic substructure within the Middle East. Most Jewish samples form a remarkably tight subcluster that overlies Druze and Cypriot samples but not samples from other Levantine populations or paired Diaspora host populations. In contrast, Ethiopian Jews (Beta Israel) and Indian Jews (Bene Israel and Cochini) cluster with neighbouring autochthonous populations in Ethiopia and western India, respectively, despite a clear paternal link between the Bene Israel and the Levant. These results cast light on the variegated genetic architecture of the Middle East, and trace the origins of most Jewish Diaspora communities to the Levant.


Assuntos
Genoma Humano/genética , Judeus/genética , África do Norte/etnologia , Alelos , Ásia , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Etiópia/etnologia , Europa (Continente) , Genótipo , Geografia , Humanos , Índia/etnologia , Judeus/classificação , Oriente Médio/etnologia , Filogenia , Análise de Componente Principal
9.
Nature ; 463(7282): 757-62, 2010 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-20148029

RESUMO

We report here the genome sequence of an ancient human. Obtained from approximately 4,000-year-old permafrost-preserved hair, the genome represents a male individual from the first known culture to settle in Greenland. Sequenced to an average depth of 20x, we recover 79% of the diploid genome, an amount close to the practical limit of current sequencing technologies. We identify 353,151 high-confidence single-nucleotide polymorphisms (SNPs), of which 6.8% have not been reported previously. We estimate raw read contamination to be no higher than 0.8%. We use functional SNP assessment to assign possible phenotypic characteristics of the individual that belonged to a culture whose location has yielded only trace human remains. We compare the high-confidence SNPs to those of contemporary populations to find the populations most closely related to the individual. This provides evidence for a migration from Siberia into the New World some 5,500 years ago, independent of that giving rise to the modern Native Americans and Inuit.


Assuntos
Criopreservação , Extinção Biológica , Genoma Humano/genética , Inuíte/genética , Emigração e Imigração/história , Genética Populacional , Genômica , Genótipo , Groenlândia , Cabelo , História Antiga , Humanos , Masculino , Fenótipo , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Sequência de DNA , Sibéria/etnologia
10.
PLoS Genet ; 9(11): e1003912, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24244186

RESUMO

Skin pigmentation is one of the most variable phenotypic traits in humans. A non-synonymous substitution (rs1426654) in the third exon of SLC24A5 accounts for lighter skin in Europeans but not in East Asians. A previous genome-wide association study carried out in a heterogeneous sample of UK immigrants of South Asian descent suggested that this gene also contributes significantly to skin pigmentation variation among South Asians. In the present study, we have quantitatively assessed skin pigmentation for a largely homogeneous cohort of 1228 individuals from the Southern region of the Indian subcontinent. Our data confirm significant association of rs1426654 SNP with skin pigmentation, explaining about 27% of total phenotypic variation in the cohort studied. Our extensive survey of the polymorphism in 1573 individuals from 54 ethnic populations across the Indian subcontinent reveals wide presence of the derived-A allele, although the frequencies vary substantially among populations. We also show that the geospatial pattern of this allele is complex, but most importantly, reflects strong influence of language, geography and demographic history of the populations. Sequencing 11.74 kb of SLC24A5 in 95 individuals worldwide reveals that the rs1426654-A alleles in South Asian and West Eurasian populations are monophyletic and occur on the background of a common haplotype that is characterized by low genetic diversity. We date the coalescence of the light skin associated allele at 22-28 KYA. Both our sequence and genome-wide genotype data confirm that this gene has been a target for positive selection among Europeans. However, the latter also shows additional evidence of selection in populations of the Middle East, Central Asia, Pakistan and North India but not in South India.


Assuntos
Antiporters/genética , Povo Asiático/genética , Pigmentação da Pele/genética , População Branca/genética , Alelos , Variação Genética , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Polimorfismo de Nucleotídeo Único
11.
Am J Hum Genet ; 90(4): 675-84, 2012 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-22482806

RESUMO

Mutational events along the human mtDNA phylogeny are traditionally identified relative to the revised Cambridge Reference Sequence, a contemporary European sequence published in 1981. This historical choice is a continuous source of inconsistencies, misinterpretations, and errors in medical, forensic, and population genetic studies. Here, after having refined the human mtDNA phylogeny to an unprecedented level by adding information from 8,216 modern mitogenomes, we propose switching the reference to a Reconstructed Sapiens Reference Sequence, which was identified by considering all available mitogenomes from Homo neanderthalensis. This "Copernican" reassessment of the human mtDNA tree from its deepest root should resolve previous problems and will have a substantial practical and educational influence on the scientific and public perception of human evolution by clarifying the core principles of common ancestry for extant descendants.


Assuntos
DNA Mitocondrial/classificação , DNA Mitocondrial/genética , Filogenia , Animais , Sequência de Bases , Evolução Biológica , Bases de Dados Genéticas , Variação Genética , Haplótipos , Humanos , Dados de Sequência Molecular , Mutação , Homem de Neandertal/genética
12.
Am J Hum Genet ; 90(5): 915-24, 2012 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-22560092

RESUMO

Human populations, along with those of many other species, are thought to have contracted into a number of refuge areas at the height of the last Ice Age. European populations are believed to be, to a large extent, the descendants of the inhabitants of these refugia, and some extant mtDNA lineages can be traced to refugia in Franco-Cantabria (haplogroups H1, H3, V, and U5b1), the Italian Peninsula (U5b3), and the East European Plain (U4 and U5a). Parts of the Near East, such as the Levant, were also continuously inhabited throughout the Last Glacial Maximum, but unlike western and eastern Europe, no archaeological or genetic evidence for Late Glacial expansions into Europe from the Near East has hitherto been discovered. Here we report, on the basis of an enlarged whole-genome mitochondrial database, that a substantial, perhaps predominant, signal from mitochondrial haplogroups J and T, previously thought to have spread primarily from the Near East into Europe with the Neolithic population, may in fact reflect dispersals during the Late Glacial period, ∼19-12 thousand years (ka) ago.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Mitocôndrias/genética , População Branca/genética , Europa (Continente) , Europa Oriental/epidemiologia , Variação Genética , Genética Populacional , Humanos , Oriente Médio , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA
13.
Ann Hum Genet ; 78(3): 178-94, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24621318

RESUMO

High mtDNA variation in Southeastern Europe (SEE) is a reflection of the turbulent and complex demographic history of this area, influenced by gene flow from various parts of Eurasia and a long history of intermixing. Our results of 1035 samples (488 from Croatia, 239 from Bosnia and 130 from Herzegovina, reported earlier, and 97 Slovenians and 81 individuals from Zumberak, reported here for the first time) show that the SEE maternal genetic diversity fits within a broader European maternal genetic landscape. The study also shows that the population of Zumberak, located in the continental part of Croatia, developed some unique mtDNA haplotypes and elevated haplogroup frequencies due to distinctive demographic history and can be considered a moderate genetic isolate. We also report seven samples from the Bosnian population and one Herzegovinian sample designated as X2* individuals that could not be assigned to any of its sublineages (X2a'o) according to the existing X2 phylogeny. In an attempt to clarify the phylogeny of our X2 samples, their mitochondrial DNA has been completely sequenced. We suppose that these lineages are signs of local microdifferentiation processes that occurred in the recent demographic past in this area and could possibly be marked as SEE-specific X2 sublineages.


Assuntos
DNA Mitocondrial/genética , Fluxo Gênico/genética , Filogenia , Análise de Variância , Sequência de Bases , Variação Genética , Genótipo , Haplótipos/genética , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Iugoslávia/etnologia
14.
Am J Hum Genet ; 89(6): 731-44, 2011 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-22152676

RESUMO

South Asia harbors one of the highest levels genetic diversity in Eurasia, which could be interpreted as a result of its long-term large effective population size and of admixture during its complex demographic history. In contrast to Pakistani populations, populations of Indian origin have been underrepresented in previous genomic scans of positive selection and population structure. Here we report data for more than 600,000 SNP markers genotyped in 142 samples from 30 ethnic groups in India. Combining our results with other available genome-wide data, we show that Indian populations are characterized by two major ancestry components, one of which is spread at comparable frequency and haplotype diversity in populations of South and West Asia and the Caucasus. The second component is more restricted to South Asia and accounts for more than 50% of the ancestry in Indian populations. Haplotype diversity associated with these South Asian ancestry components is significantly higher than that of the components dominating the West Eurasian ancestry palette. Modeling of the observed haplotype diversities suggests that both Indian ancestry components are older than the purported Indo-Aryan invasion 3,500 YBP. Consistent with the results of pairwise genetic distances among world regions, Indians share more ancestry signals with West than with East Eurasians. However, compared to Pakistani populations, a higher proportion of their genes show regionally specific signals of high haplotype homozygosity. Among such candidates of positive selection in India are MSTN and DOK5, both of which have potential implications in lipid metabolism and the etiology of type 2 diabetes.


Assuntos
Estudo de Associação Genômica Ampla , Seleção Genética , Ásia , Diabetes Mellitus Tipo 2/genética , Predisposição Genética para Doença , Haplótipos , Hereditariedade , Humanos , Metabolismo dos Lipídeos/genética , Modelos Genéticos , Filogeografia , Polimorfismo de Nucleotídeo Único , Análise de Componente Principal
15.
iScience ; 27(6): 110016, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38883810

RESUMO

West and South Asian populations profoundly influenced Eurasian genetic and cultural diversity. We investigate the genetic history of the Y chromosome haplogroup L1-M22, which, while prevalent in these regions, lacks in-depth study. Robust Bayesian analyses of 165 high-coverage Y chromosomes favor a West Asian origin for L1-M22 ∼20.6 thousand years ago (kya). Moreover, this haplogroup parallels the genome-wide genetic ancestry of hunter-gatherers from the Iranian Plateau and the Caucasus. We characterized two L1-M22 harboring population groups during the Early Holocene. One expanded with the West Asian Neolithic transition. The other moved to South Asia ∼8-6 kya but showed no expansion. This group likely participated in the spread of Dravidian languages. These South Asian L1-M22 lineages expanded ∼4-3 kya, coinciding with the Steppe ancestry introduction. Our findings advance the current understanding of Eurasian historical dynamics, emphasizing L1-M22's West Asian origin, associated population movements, and possible linguistic impacts.

16.
Eur J Hum Genet ; 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605123

RESUMO

The Oirats are a group of Mongolian-speaking peoples residing in Russia, China, and Mongolia, who speak Oirat dialects of the Mongolian language. Migrations of nomadic ethnopolitical formations of the Oirats across the Eurasian Steppe during the Late Middle Ages/early Modern times resulted in a wide geographic spread of Oirat ethnic groups from present-day northwestern China in East Asia to the Lower Volga region in Eastern Europe. In this study, we generate new genome-wide and mitochondrial DNA data for present-day Oirat-speaking populations from Kalmykia in Eastern Europe, Western Mongolia, and the Xinjiang region of China, as well as Issyk-Kul Sart-Kalmaks from Central Asia, and historically related ethnic groups from Altai, Tuva, and Northern Mongolia to study the genetic structure and history of the Oirats. Despite their spatial and temporal separation, small current population census, both the Kalmyks of Eastern Europe and the Oirats of Western Mongolia in East Asia are characterized by strong genetic similarity, high effective population size, and low levels of interpopulation structure. This contrasts the fine genetic structure observed today at a smaller geographic scale in traditionally sedentary populations, and is conditioned by high mobility and marriage practices (traditional strict exogamy) in nomadic groups. Conversely, the genetic profile of the Issyk-Kul Sart-Kalmaks suggests a distinct source(s) of genetic ancestry, along with indications of isolation and genetic drift compared to other Oirats. Our results also show that there was limited gene flow between the ancestors of the Oirats and the Altaians during the late Middle Ages. Source of the yurt image: https://www.vecteezy.com/free-vector/yurt .

17.
BMC Evol Biol ; 13: 127, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23782551

RESUMO

BACKGROUND: Sakha--an area connecting South and Northeast Siberia--is significant for understanding the history of peopling of Northeast Eurasia and the Americas. Previous studies have shown a genetic contiguity between Siberia and East Asia and the key role of South Siberia in the colonization of Siberia. RESULTS: We report the results of a high-resolution phylogenetic analysis of 701 mtDNAs and 318 Y chromosomes from five native populations of Sakha (Yakuts, Evenks, Evens, Yukaghirs and Dolgans) and of the analysis of more than 500,000 autosomal SNPs of 758 individuals from 55 populations, including 40 previously unpublished samples from Siberia. Phylogenetically terminal clades of East Asian mtDNA haplogroups C and D and Y-chromosome haplogroups N1c, N1b and C3, constituting the core of the gene pool of the native populations from Sakha, connect Sakha and South Siberia. Analysis of autosomal SNP data confirms the genetic continuity between Sakha and South Siberia. Maternal lineages D5a2a2, C4a1c, C4a2, C5b1b and the Yakut-specific STR sub-clade of Y-chromosome haplogroup N1c can be linked to a migration of Yakut ancestors, while the paternal lineage C3c was most likely carried to Sakha by the expansion of the Tungusic people. MtDNA haplogroups Z1a1b and Z1a3, present in Yukaghirs, Evens and Dolgans, show traces of different and probably more ancient migration(s). Analysis of both haploid loci and autosomal SNP data revealed only minor genetic components shared between Sakha and the extreme Northeast Siberia. Although the major part of West Eurasian maternal and paternal lineages in Sakha could originate from recent admixture with East Europeans, mtDNA haplogroups H8, H20a and HV1a1a, as well as Y-chromosome haplogroup J, more probably reflect an ancient gene flow from West Eurasia through Central Asia and South Siberia. CONCLUSIONS: Our high-resolution phylogenetic dissection of mtDNA and Y-chromosome haplogroups as well as analysis of autosomal SNP data suggests that Sakha was colonized by repeated expansions from South Siberia with minor gene flow from the Lower Amur/Southern Okhotsk region and/or Kamchatka. The minor West Eurasian component in Sakha attests to both recent and ongoing admixture with East Europeans and an ancient gene flow from West Eurasia.


Assuntos
Povo Asiático/genética , Genética Populacional , População Branca/genética , Povo Asiático/classificação , Povo Asiático/etnologia , Cromossomos Humanos Y/genética , DNA Mitocondrial/genética , Ásia Oriental/etnologia , Feminino , Pool Gênico , Haplótipos , Humanos , Masculino , Filogenia , Polimorfismo de Nucleotídeo Único , Sibéria/etnologia , População Branca/classificação , População Branca/etnologia
18.
Mol Biol Evol ; 29(1): 359-65, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21917723

RESUMO

The Caucasus, inhabited by modern humans since the Early Upper Paleolithic and known for its linguistic diversity, is considered to be important for understanding human dispersals and genetic diversity in Eurasia. We report a synthesis of autosomal, Y chromosome, and mitochondrial DNA (mtDNA) variation in populations from all major subregions and linguistic phyla of the area. Autosomal genome variation in the Caucasus reveals significant genetic uniformity among its ethnically and linguistically diverse populations and is consistent with predominantly Near/Middle Eastern origin of the Caucasians, with minor external impacts. In contrast to autosomal and mtDNA variation, signals of regional Y chromosome founder effects distinguish the eastern from western North Caucasians. Genetic discontinuity between the North Caucasus and the East European Plain contrasts with continuity through Anatolia and the Balkans, suggesting major routes of ancient gene flows and admixture.


Assuntos
Emigração e Imigração/história , Fluxo Gênico , Algoritmos , Antropologia Física , Povo Asiático/genética , Cromossomos Humanos Y , Análise por Conglomerados , DNA , DNA Mitocondrial/genética , Genética Populacional , História Antiga , Humanos , Linguística , Transcaucásia , População Branca/genética
19.
Mol Biol Evol ; 29(1): 249-60, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21836184

RESUMO

Milk consumption and lactose digestion after weaning are exclusively human traits made possible by the continued production of the enzyme lactase in adulthood. Multiple independent mutations in a 100-bp region--part of an enhancer--approximately 14-kb upstream of the LCT gene are associated with this trait in Europeans and pastoralists from Saudi Arabia and Africa. However, a single mutation of purported western Eurasian origin accounts for much of observed lactase persistence outside Africa. Given the high levels of present-day milk consumption in India, together with archaeological and genetic evidence for the independent domestication of cattle in the Indus valley roughly 7,000 years ago, we sought to determine whether lactase persistence has evolved independently in the subcontinent. Here, we present the results of the first comprehensive survey of the LCT enhancer region in south Asia. Having genotyped 2,284 DNA samples from across the Indian subcontinent, we find that the previously described west Eurasian -13910 C>T mutation accounts for nearly all the genetic variation we observed in the 400- to 700-bp LCT regulatory region that we sequenced. Geography is a significant predictor of -13910*T allele frequency, and consistent with other genomic loci, its distribution in India follows a general northwest to southeast declining pattern, although frequencies among certain neighboring populations vary substantially. We confirm that the mutation is identical by descent to the European allele and is associated with the same>1 Mb extended haplotype in both populations.


Assuntos
Criação de Animais Domésticos , Lactase/genética , Seleção Genética , População Branca/genética , Animais , Bovinos , Evolução Molecular , Frequência do Gene , Haplótipos , Humanos , Índia , Lactase/metabolismo , Fenótipo , Polimorfismo de Nucleotídeo Único
20.
Ann Hum Genet ; 77(5): 392-408, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23808542

RESUMO

South Asian populations harbor a high degree of genetic diversity, due in part to demographic history. Two studies on genome-wide variation in Indian populations have shown that most Indian populations show varying degrees of admixture between ancestral north Indian and ancestral south Indian components. As a result of this structure, genetic variation in India appears to follow a geographic cline. Similarly, Indian populations seem to show detectable differences in diabetes and obesity prevalence between different geographic regions of the country. We tested the hypothesis that genetic variation at diabetes- and obesity-associated loci may be potentially related to different genetic ancestries. We genotyped 2977 individuals from 61 populations across India for 18 SNPs in genes implicated in T2D and obesity. We examined patterns of variation in allele frequency across different geographical gradients and considered state of origin and language affiliation. Our results show that most of the 18 SNPs show no significant correlation with latitude, the geographic cline reported in previous studies, or by language family. Exceptions include KCNQ1 with latitude and THADA and JAK1 with language, which suggests that genetic variation at previously ascertained diabetes-associated loci may only partly mirror geographic patterns of genome-wide diversity in Indian populations.


Assuntos
Diabetes Mellitus/epidemiologia , Diabetes Mellitus/genética , Loci Gênicos , Variação Genética , Obesidade/genética , Alelos , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/genética , Frequência do Gene , Predisposição Genética para Doença , Genótipo , Humanos , Índia/epidemiologia , Polimorfismo de Nucleotídeo Único , Prevalência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa