Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 153
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-37511069

RESUMO

Lactobacillus delbrueckii, the type species of the genus Lactobacillus, is widely recognized as the primary starter culture in the dairy industry due to its proteolytic activity, which enables it to growth in milk. In this study, a comprehensive genomic analysis of the proteolytic system was conducted on L. delbrueckii strains. The analysis included 27 genomes of L. delbrueckii, with a specific focus on the key enzyme involved in this system, the cell envelope-associated proteinase (CEP). The amino acid sequences, as well as the protein-structure prediction of the CEPs, were compared. Additionally, syntenic analysis of the genomic locus related to the CEPs revealed high conservation in L. delbrueckii subsp. bulgaricus strains, while L. delbrueckii subsp. lactis strains exhibited greater variability, including the presence of insertion sequences, deletions, and rearrangements. Finally, the CEP promoter region and putative regulatory elements responsible for controlling the expression of the proteolytic system in lactobacilli were investigated. Our genomic analysis and in silico characterization of the CEPs contribute to our understanding of proteolytic activity and the potential applications of these lactic acid bacteria in the dairy industry. Further research in this area will expand our knowledge and potential practical uses of these findings.


Assuntos
Lactobacillus delbrueckii , Lactobacillus delbrueckii/genética , Peptídeo Hidrolases/metabolismo , Lactobacillus , Sequência de Aminoácidos , Genômica
2.
Int J Mol Sci ; 24(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37240146

RESUMO

Klebsiella pneumoniae is an opportunistic pathogen that can produce moderate and severe infections in immunosuppressed hosts. In recent years, an increase in the isolation of hypermucoviscous carbapenem-resistant K. pneumoniae with sequence type 25 (ST25) in hospitals in Norwest Argentina was observed. This work aimed to study the virulence and inflammatory potential of two K. pneumoniae ST25 strains (LABACER01 and LABACER27) in the intestinal mucosa. The human intestinal Caco-2 cells were infected with the K. pneumoniae ST25 strains, and their adhesion and invasion rates and changes in the expression of tight junction and inflammatory factors genes were evaluated. ST25 strains were able to adhere and invade Caco-2 cells, reducing their viability. Furthermore, both strains reduced the expression of tight junction proteins (occludin, ZO-1, and claudin-5), altered permeability, and increased the expression of TGF-ß and TLL1 and the inflammatory factors (COX-2, iNOS, MCP-1, IL-6, IL-8, and TNF-α) in Caco-2 cells. The inflammatory response induced by LABACER01 and LABACER27 was significantly lower than the one produced by LPS or other intestinal pathogens, including K. pneumoniae NTUH-K2044. No differences in virulence and inflammatory potential were found between LABACER01 and LABACER27. In line with these findings, no major differences between the strains were found when the comparative genomic analysis of virulence factors associated with intestinal infection/colonization was performed. This work is the first to demonstrate that hypermucoviscous carbapenem-resistant K. pneumoniae ST25 infects human intestinal epithelial cells and induces moderate inflammation.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Células CACO-2 , Carbapenêmicos/farmacologia , Inflamação , Antibacterianos/farmacologia , Metaloproteases Semelhantes a Toloide
3.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069229

RESUMO

Lacticaseibacillus rhamnosus CRL1505 beneficially modulates the inflammation-coagulation response during respiratory viral infections. This study evaluated the capacity of the peptidoglycan obtained from the CRL1505 strain (PG-Lr1505) to modulate the immuno-coagulative response triggered by the viral pathogen-associated molecular pattern poly(I:C) in the respiratory tract. Adult BALB/c mice were nasally treated with PG-Lr1505 for two days. Treated and untreated control mice were then nasally challenged with poly(I:C). Mice received three doses of poly(I:C) with a 24 h rest period between each administration. The immuno-coagulative response was studied after the last administration of poly(I:C). The challenge with poly(I:C) significantly increased blood and respiratory pro-inflammatory mediators, decreased prothrombin activity (PT), and increased von Willebrand factor (vWF) levels in plasma. Furthermore, tissue factor (TF), tissue factor pathway inhibitor (TFPI), and thrombomodulin (TM) expressions were increased in the lungs. PG-Lr1505-treated mice showed significant modulation of hemostatic parameters in plasma (PT in %, Control = 71.3 ± 3.8, PG-Lr1505 = 94.0 ± 4.0, p < 0.01) and lungs. Moreover, PG-Lr1505-treated mice demonstrated reduced TF in F4/80 cells from lungs, higher pro-inflammatory mediators, and increased IL-10 compared to poly(I:C) control mice (IL-10 in pg/mL, Control = 379.1 ± 12.1, PG-Lr1505 = 483.9 ± 11.3, p < 0.0001). These changes induced by PG-Lr1505 correlated with a significant reduction in lung tissue damage. Complementary in vitro studies using Raw 264.7 cells confirmed the beneficial effect of PG-Lr1505 on poly(I:C)-induced inflammation, since increased IL-10 expression, as well as reduced damage, production of inflammatory mediators, and hemostatic parameter expressions were observed. In addition, protease-activated receptor-1 (PAR1) activation in lungs and Raw 264.7 cells was observed after TLR3 stimulation, which was differentially modulated by PG-Lr1505. The peptidoglycan from L. rhamnosus CRL1505 is able to regulate inflammation, the procoagulant state, and PAR1 activation in mice and macrophages in the context of the activation of TLR3 signaling pathways, contributing to a beneficial modulation of inflammation-hemostasis crosstalk.


Assuntos
Hemostáticos , Lacticaseibacillus rhamnosus , Animais , Camundongos , Interleucina-10 , Peptidoglicano/farmacologia , Citocinas/metabolismo , Receptor PAR-1 , Receptor 3 Toll-Like , Pulmão/metabolismo , Inflamação , Mediadores da Inflamação
4.
Int J Mol Sci ; 24(21)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37958756

RESUMO

Previously, we isolated potentially probiotic Ligilactobacillus salivarius strains from the intestines of wakame-fed pigs. The strains were characterized based on their ability to modulate the innate immune responses triggered by the activation of Toll-like receptor (TLR)-3 or TLR4 signaling pathways in intestinal mucosa. In this work, we aimed to evaluate whether nasally administered L. salivarius strains are capable of modulating the innate immune response in the respiratory tract and conferring long-term protection against the respiratory pathogen Streptococcus pneumoniae. Infant mice (3-weeks-old) were nasally primed with L. salivarius strains and then stimulated with the TLR3 agonist poly(I:C). Five or thirty days after the last poly(I:C) administration mice were infected with pneumococci. Among the strains evaluated, L. salivarius FFIG58 had a remarkable ability to enhance the protection against the secondary pneumococcal infection by modulating the respiratory immune response. L. salivarius FFIG58 improved the ability of alveolar macrophages to produce interleukin (IL)-6, interferon (IFN)-γ, IFN-ß, tumor necrosis factor (TNF)-α, IL-27, chemokine C-C motif ligand 2 (CCL2), chemokine C-X-C motif ligand 2 (CXCL2), and CXCL10 in response to pneumococcal challenge. Furthermore, results showed that the nasal priming of infant mice with the FFIG58 strain protected the animals against secondary infection until 30 days after stimulation with poly(I:C), raising the possibility of using nasally administered immunobiotics to stimulate trained immunity in the respiratory tract.


Assuntos
Ligilactobacillus salivarius , Streptococcus pneumoniae , Humanos , Animais , Camundongos , Suínos , Ligantes , Imunidade Inata , Fator de Necrose Tumoral alfa , Quimiocinas
5.
Int J Mol Sci ; 23(13)2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35806365

RESUMO

In recent years, an increase in the prevalence hypermucoviscous carbapenem-resistant Klebsiella pneumoniae with sequence type 25 (ST25) was detected in hospitals of Tucuman (Northwest Argentina). In this work, the virulence and the innate immune response to two K. pneumoniae ST25 strains (LABACER 01 and LABACER 27) were evaluated in a murine model after a respiratory challenge. In addition, comparative genomics was performed with K. pneumoniae LABACER01 and LABACER27 to analyze genes associated with virulence. Both LABACER01 and LABACER27 were detected in the lungs of infected mice two days after the nasal challenge, with LABACER01 counts significantly higher than those of LABACER27. Only LABACER01 was detected in hemocultures. Lactate dehydrogenase (LDH) and albumin levels in bronchoalveolar lavage (BAL) samples were significantly higher in mice challenged with LABACER01 than in LABACER27-infected animals, indicating greater lung tissue damage. Both strains increased the levels of neutrophils, macrophages, TNF-α, IL-1ß, IL-6, KC, MCP-1, IFN-γ, and IL-17 in the respiratory tract and blood, with the effect of LABACER01 more marked than that of LABACER27. In contrast, LABACER27 induced higher levels of IL-10 in the respiratory tract than LABACER01. Genomic analysis revealed that K. pneumoniae LABACER01 and LABACER27 possess virulence factors found in other strains that have been shown to be hypervirulent, including genes required for enterobactin (entABCDEF) and salmochelin (iroDE) biosynthesis. In both strains, the genes of toxin-antitoxin systems, as well as regulators of the expression of virulence factors and adhesion genes were also detected. Studies on the genetic potential of multiresistant K. pneumoniae strains as well as their cellular and molecular interactions with the host are of fundamental importance to assess the association of certain virulence factors with the intensity of the inflammatory response. In this sense, this work explored the virulence profile based on genomic and in vivo studies of hypermucoviscous carbapenem-resistant K. pneumoniae ST25 strains, expanding the knowledge of the biology of the emerging ST25 clone in Argentina.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Animais , Antibacterianos/farmacologia , Argentina , Carbapenêmicos/farmacologia , Genômica , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae , Camundongos , Fatores de Virulência/genética , Fatores de Virulência/farmacologia
6.
Int J Mol Sci ; 23(22)2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36430834

RESUMO

Both viable and non-viable orally administered Lacticaseibacillus rhamnosus CRL1505 modulate immunity in local (intestine) and distal (respiratory) mucosal sites. So, intestinal adhesion and colonization are not necessary for this probiotic strain to exert its immunomodulatory effects. In this work, a mucus-binding factor knockout CRL1505 strain (ΔmbfCRL1505) was obtained and the lack of binding ability to both intestinal epithelial cells and mucin was demonstrated in vitro. In addition, two sets of in vivo experiments in 6-week-old Balb/c mice were performed to evaluate ΔmbfCRL1505 immunomodulatory activities. (A) Orally administered ΔmbfCRL1505 prior to intraperitoneal injection of the Toll-like receptor 3 (TLR3) agonist poly(I:C) significantly reduced intraepithelial lymphocytes (CD3+NK1.1+CD8αα+) and pro-inflammatory mediators (TNF-α, IL-6 and IL-15) in the intestinal mucosa. (B) Orally administered ΔmbfCRL1505 prior to nasal stimulation with poly(I:C) significantly decreased the levels of the biochemical markers of lung tissue damage. In addition, reduced recruitment of neutrophils and levels of pro-inflammatory mediators (TNF-α, IL-6 and IL-8) as well as increased IFN-ß and IFN-γ in the respiratory mucosa were observed in ΔmbfCRL1505-treated mice when compared to untreated control mice. The immunological changes induced by the ΔmbfCRL1505 strain were not different from those observed for the wild-type CRL1505 strain. Although it is generally accepted that the expression of adhesion factors is necessary for immunobiotics to induce their beneficial effects, it was demonstrated here that the mbf protein is not required for L. rhamnosus CRL1505 to exert its immunomodulatory activities in local and distal mucosal sites. These results are a step forward towards understanding the mechanisms involved in the immunomodulatory capabilities of L. rhamnosus CRL1505.


Assuntos
Lacticaseibacillus rhamnosus , Fator de Necrose Tumoral alfa , Camundongos , Animais , Interleucina-6 , Muco , Camundongos Endogâmicos BALB C , Poli I-C , Pulmão , Mediadores da Inflamação , Fibrinogênio
7.
Appl Microbiol Biotechnol ; 104(24): 10669-10683, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33079228

RESUMO

Previously, we demonstrated that Lactobacillus casei CRL431, a well-known immunomodulatory bacterium, beneficially regulates coagulation activation, fibrin formation in lung, and the pro-inflammatory state induced by protein malnourishment and pneumococcal infection. In this study, we deepen in the understanding of the mechanisms involved in the immunoregulatory activity of L. casei CRL431 during a nutritional repletion process by evaluating (a) platelet and endothelial activation, (b) tissue factor (TF) expression, and (c) protease-activated receptor (PAR) activation in an experimental bacterial respiratory infection model in malnourished mice. Our findings demonstrate for the first time that the repletion diet supplemented with L. casei CRL431 was effective to normalize platelet counts in blood, modulate platelet activation and their recruitment into the lung, and regulate local and systemic TF expression and endothelial activation, which were affected by malnourishment. Streptococcus pneumoniae challenge induced local and systemic increase of platelet counts, PARs activation, P-selectin and TF expression, as well as endothelial activation in both well-nourished and malnourished mice. Malnourished animals evidenced the highest alterations of the parameters evaluated while the mice fed with the probiotic bacterium had similar behavior to normal controls but with lower PAR activation in lung. These results demonstrate that supplementation of repletion diet with L. casei CRL431 is effective to modulate alterations induced by malnourishment and pneumococcal infection, restraining coagulation activation, the inflammatory process, and lung damage. These observations contribute to set the basis for the application of probiotic functional foods to modulate the inflammation-hemostasis interactions altered by malnourishment or bacterial respiratory infections. KEY POINTS: • Pneumococcal infection increases pro-coagulant state induced by protein malnourishment. • Repletion with L. casei CRL431 modulates platelet, TF, and endothelial activation. • L. casei CRL431 improves immune-coagulative response in protein malnourishment.


Assuntos
Hemostáticos , Lacticaseibacillus casei , Desnutrição , Infecções Pneumocócicas , Probióticos , Infecções Respiratórias , Animais , Hemostasia , Camundongos , Streptococcus pneumoniae
8.
Int J Mol Sci ; 21(2)2020 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-31963662

RESUMO

Adipocytes are dynamic cells that have critical functions to maintain body energy homeostasis. Adipocyte physiology is affected by the adipogenic differentiation, cell program, as well as by the exogenous stimulation of biochemical factors, such as serotonin and TNF-α. In this work, we investigated the global transcriptome modifications when porcine intramuscular preadipocyte (PIP) was differentiated into porcine mature adipocyte (pMA). Moreover, we studied transcriptome changes in pMA after stimulation with serotonin or TNF-α by using a microarray approach. Transcriptome analysis revealed that the expression of 270, 261, and 249 genes were modified after differentiation, or after serotonin and TNF-α stimulation, respectively. Expression changes in APP, HNF4A, ESR1, EGR1, SRC, HNF1A, FN1, ALB, STAT3, CBL, CEBPB, AR, FOS, CFTR, PAN2, PTPN6, VDR, PPARG, STAT5A and NCOA3 genes which are enriched in the 'PPAR signaling' and 'insulin resistance' pathways were found in adipocytes during the differentiation process. Dose-dependent serotonin stimulation resulted in a decreased fat accumulation in pMAs. Serotonin-induced differentially expressed genes in pMAs were found to be involved in the significant enrichment of 'GPCR ligand-binding', 'cell chemotaxis', 'blood coagulation and complement', 'metabolism of lipid and lipoproteins', 'regulation of lipid metabolism by PPARA', and 'lipid digestion, mobilization and transport' pathways. TNF-α stimulation also resulted in transcriptome modifications linked with proinflammatory responses in the pMA of intramuscular origin. Our results provide a landscape of transcriptome modifications and their linked-biological pathways in response to adipogenesis, and exogenous stimulation of serotonin- and TNF-α to the pMA of intramuscular origin.


Assuntos
Adipócitos/citologia , Perfilação da Expressão Gênica/veterinária , Músculo Esquelético/citologia , Serotonina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Adipócitos/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Suínos
9.
Biofouling ; 35(8): 922-937, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31646895

RESUMO

The ability to form biofilms and the potential immunomodulatory properties of the human gastric isolate Lactobacillus rhamnosus UCO-25A were characterized in vitro. It was demonstrated that L. rhamnosus UCO-25A is able to form biofilms on abiotic and cell surfaces, and to modulate the inflammatory response triggered by Helicobacter pylori infection in gastric epithelial cells and THP-1 macrophages. L. rhamnosus UCO-25A exhibited a substantial anti-inflammatory effect in both cell lines and improved IL-10 levels produced by challenged macrophages. Additionally, UCO-25A protected AGS cells against H. pylori infection with a higher pathogen inhibition when a biofilm was formed. Given the importance of inflammation in H. pylori-mediated diseases, the differential modulation of the inflammatory response in the gastric mucosa by an autochthonous strain is an attractive alternative for improving H. pylori eradication and reducing the severity of the diseases that arise from the resulting chronic inflammation.


Assuntos
Biofilmes/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Helicobacter pylori/crescimento & desenvolvimento , Fatores Imunológicos/farmacologia , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Macrófagos/microbiologia , Probióticos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular , Citocinas/biossíntese , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Mucosa Gástrica/imunologia , Mucosa Gástrica/microbiologia , Infecções por Helicobacter/prevenção & controle , Humanos , Lacticaseibacillus rhamnosus/isolamento & purificação , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia
10.
BMC Immunol ; 17(1): 21, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27342653

RESUMO

BACKGROUND: Immunobiotic Lactobacillus jensenii TL2937 modulates porcine mononuclear phagocytes from Peyer's patches (PPMPs) and induces a differential production of pro- and anti-inflammatory cytokines in response to Toll-like receptor (TLR)-4 activation. In view of the important role played by phagocytosis in the activation of antigen presenting cells (APCs), the aim of the present work was to examine the interaction of TL2937 with porcine PPMPs focusing on phagocytosis. In addition, this study aimed to investigate whether the effects of L. jensenii TL2937 in porcine blood monocyte-derived dendritic cells (MoDCs) are similar to those found in PPMPs considering that MoDCs do not recapitulate all functions of mucosal APCs. RESULTS: Studies showed a high ability of porcine CD172a(+) PPMPs to phagocytose L. jensenii TL2937. Interestingly, our results also revealed a reduced capacity of the non-immunomodulatory L. plantarum TL2766 to be phagocytosed by those immune cells. Phagocytosis of L. jensenii TL2937 by porcine PPMPs was partially dependent on TLR2. In addition, we demonstrated that TL2937 strain was able to improve the expression of IL-1ß, IL-12 and IL-10 in immature MoDCs resembling the effect of this immunobiotic bacterium on PPMPs. Moreover, similarly to PPMPs those immunomodulatory effects were related to the higher capacity of TL2937 to be phagocytosed by immature MoDCs. CONCLUSIONS: Microbial recognition in APCs could be effectively mediated through ligand-receptor interactions that then mediate phagocytosis and signaling. For the immunobiotic strain TL2937, TLR2 has a partial role for its interaction with porcine APCs and it is necessary to investigate the role of other receptors. A challenge for future research will be advance in the full understanding of the molecular interactions of immunobiotic L. jensenii TL2937 with porcine APCs that will be crucial for the successful development of functional feeds for the porcine host. This study is a step in that direction.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Dendríticas/imunologia , Imunomodulação , Mucosa Intestinal/imunologia , Lactobacillus johnsonii/imunologia , Monócitos/imunologia , Fagocitose , Animais , Células Cultivadas , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-1beta/metabolismo , Probióticos , Especificidade da Espécie , Suínos , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
11.
Inflamm Res ; 65(10): 771-83, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27279272

RESUMO

OBJECTIVE: Intestinal intraepithelial lymphocytes (IELs) play critical roles in disrupting epithelial homeostasis after Toll-like receptor (TLR)-3 activation with genomic rotavirus dsRNA or the synthetic dsRNA analog poly(I:C). The capacity of immunobiotic Lactobacillus rhamnosus CRL1505 (Lr1505) or Lactobacillus plantarum CRL1506 (Lp1506) to beneficially modulate IELs response after TLR3 activation was investigated in vivo using a mice model. RESULTS: Intraperitoneal administration of poly(I:C) induced inflammatory-mediated intestinal tissue damage through the increase of inflammatory cells (CD3(+)NK1.1(+), CD3(+)CD8αα(+), CD8αα(+)NKG2D(+)) and pro-inflammatory mediators (TNF-α, IL-1ß, IFN-γ, IL-15, RAE1, IL-8). Increased expression of intestinal TLR3, MDA5, and RIG-I was also observed after poly(I:C) challenge. Treatment with Lr1505 or Lp1506 prior to TLR3 activation significantly reduced the levels of TNF-α, IL-15, RAE1, and increased serum and intestinal IL-10. Moreover, CD3(+)NK1.1(+), CD3(+)CD8αα(+), and CD8αα(+)NKG2D(+) cells were lower in lactobacilli-treated mice when compared to controls. The immunomodulatory capacities of lactobacilli allowed a significant reduction of intestinal tissue damage. CONCLUSIONS: This work demonstrates the reduction of TLR3-mediated intestinal tissue injury by immunobiotic lactobacilli through the modulation of intraepithelial lymphocytes response. It is a step forward in the understanding of the cellular mechanisms involved in the antiviral capabilities of immunobiotic strains.


Assuntos
Enterite/terapia , Lacticaseibacillus rhamnosus , Lactobacillus plantarum , Probióticos/uso terapêutico , Receptor 3 Toll-Like/agonistas , Animais , Líquido Ascítico/citologia , Aspartato Aminotransferases/sangue , Citocinas/sangue , Citocinas/metabolismo , Enterite/induzido quimicamente , Enterite/metabolismo , Enterite/patologia , Secreções Intestinais/metabolismo , Intestinos/citologia , Intestinos/patologia , L-Lactato Desidrogenase/sangue , Contagem de Leucócitos , Linfócitos/imunologia , Masculino , Camundongos Endogâmicos BALB C , Poli I-C
12.
Can J Microbiol ; 62(6): 514-24, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27149540

RESUMO

Probiotics are usually isolated from the gastrointestinal tract of humans and animals. The search of probiotics in human milk is a recent field of research, as the existence of the human milk microbiome was discovered only about a decade ago. To our knowledge, no reports regarding the potential probiotic effect of bacteria from swine milk have been published. In this work, we isolated several lactic acid bacteria from swine milk and evaluated them for them potential as probiotics. Among the isolated strains, Lactobacillus curvatus TUCO-5E showed antagonistic effects against swine-associated gastrointestinal pathogens. TUCO-5E was able to reduce the growth of enterotoxigenic and enterohemorrhagic Escherichia coli strains as well as pathogenic salmonella. In vitro exclusion and displacement assays in intestinal epithelial cells showed a remarkable antagonistic effect for L. curvatus TUCO-5E against Salmonella sp. strain TUCO-I7 and Salmonella enterica ATCC 13096. Moreover, by using a mouse model of Salmonella infection, we were able to demonstrate that preventative administration of L. curvatus TUCO-5E for 5 consecutive days was capable of decreasing the number of Salmonella enterica serovar Typhimurium in the liver and spleen of treated mice, compared with the controls, and prevented dissemination of the pathogen to the blood stream. Therefore, we have demonstrated here that swine milk is an interesting source of beneficial bacteria. In addition, the results of this work suggest that L. curvatus TUCO-5E is a good candidate to study in vivo the protective effect of probiotics against intestinal infection and damage induced by Salmonella infection in the porcine host.


Assuntos
Lactobacillus/isolamento & purificação , Leite/microbiologia , Probióticos/administração & dosagem , Salmonelose Animal/prevenção & controle , Salmonella typhimurium/crescimento & desenvolvimento , Doenças dos Suínos/prevenção & controle , Animais , Modelos Animais de Doenças , Farmacorresistência Bacteriana , Trato Gastrointestinal/microbiologia , Proteínas Hemolisinas/análise , Humanos , Ácido Láctico/metabolismo , Lactobacillus/efeitos dos fármacos , Lactobacillus/fisiologia , Fígado/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Baço/microbiologia , Suínos
13.
Inflamm Res ; 64(8): 589-602, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26072063

RESUMO

OBJECTIVE: To evaluate the effect of the nasal administration of live and heat-killed Lactobacillus rhamnosus CRL1505 (Lr1505) on immune-coagulative response during influenza virus (IFV) infection to improve survival and reduce lung injury. METHODS: Six-week-old BALB/c mice were treated with live or heat-killed Lr1505 by the nasal route during two consecutive days. Treated and untreated control mice were then nasally challenged with IFV. RESULTS: Both viable and non-viable Lr1505 protected infected mice by reducing pulmonary injury and lung viral loads trough several mechanisms: (a) Inflammatory cytokines were efficiently regulated allowing higher clearance of virus and reduction of inflammatory lung tissue damage, associated to higher levels of the regulatory cytokine IL-10. (b) The antiviral immune response was enhanced with improved levels of type I interferons, CD4(+)IFN-γ(+) lymphocytes, and lung CD11c(+)CD11b(low)CD103(+) and CD11c(+)CD11b(high)CD103(-) dendritic cells. (c) The procoagulant state was reversed mainly by down-regulating tissue factor expression and restoring thrombomodulin levels in lung. The capacity of Lr1505 to improve the outcome of IFV infection would be related to its ability to beneficially modulate lung TLR3-triggered immune response. CONCLUSIONS: Our work is the first to demonstrate the ability of an immunobiotic strain to beneficially modulate inflammation-coagulation interactions during IFV infection. Interestingly, non-viable L. rhamnosus CRL1505 was as effective as the viable strain to beneficially modulate respiratory antiviral immune response.


Assuntos
Lesão Pulmonar Aguda/imunologia , Fatores Imunológicos/farmacologia , Lacticaseibacillus rhamnosus , Infecções por Orthomyxoviridae/imunologia , Probióticos/farmacologia , Lesão Pulmonar Aguda/sangue , Lesão Pulmonar Aguda/patologia , Lesão Pulmonar Aguda/virologia , Administração Intranasal , Animais , Coagulação Sanguínea , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Citocinas/sangue , Citocinas/imunologia , Contagem de Leucócitos , Pulmão/imunologia , Pulmão/patologia , Pulmão/virologia , Masculino , Camundongos Endogâmicos BALB C , Orthomyxoviridae , Infecções por Orthomyxoviridae/sangue , Infecções por Orthomyxoviridae/patologia , Infecções por Orthomyxoviridae/virologia , Contagem de Plaquetas , Poli I-C/farmacologia
14.
BMC Immunol ; 15: 24, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24943108

RESUMO

BACKGROUND: Immunoregulatory probiotics (immunobiotics) have been proposed to improve piglets' immune system to avoid intestinal infections and reduce unproductive inflammation after weaning. Previously, it was demonstrated that Lactobacillus jensenii TL2937 (LjTL2937) attenuated the inflammatory response triggered by activation of Toll-like receptor 4 (TLR-4) in porcine intestinal epithelial (PIE) cells and antigen presenting cells (APCs) from porcine Peyer's patches (PP). OBJECTIVE: In view of the critical importance of PIE-APCs interactions in the regulation of intestinal immune responses, we aimed to examine the effect of LjTL2937 on activation patterns of APCs from swine PPs in co-cultures with PIE cells. In addition, we investigated whether LjTL2937 was able to beneficially modulate intestinal immunity of piglets after weaning to improve immune-health status. RESULTS: Stimulation of PIE-APCs co-cultures with LjTL2937 increased the expression of MHC-II, CD80/86, IL-10, and Bcl-3 in CD172a+CD11R1- and CD172a+CD11R1high APCs. In addition, the TL2937 strain caused the upregulation of three negative regulators of TLR4 in PIE cells: MKP-1, Bcl-3 and A20. These changes significantly reduced the inflammatory response triggered by TLR4 activation in PIE-APCs co-cultures. The in vivo experiments using castrated male piglets (crossbreeding (LWD) with Landrace (L), Large Yorkshire (W) and Duroc (D))of 3 weeks of age demonstrated that feeding with LjTL2937 significantly reduced blood complement activity and C reactive protein concentrations while no changes were observed in blood leukocytes, ratio of granulocytes to lymphocyte numbers, macrophages' activity and antibody levels. In addition, treatment with LjTL2937 significantly improved growth performance and productivity, and increased carcass quality. CONCLUSIONS: We demonstrated that the use of immunobiotics strains like LjTL2937, as supplemental additives for piglets feedings, could be used as a strategy to maintain and improve intestinal homeostasis; that is important for the development of the pig and for health and performance throughout the productive life of the animal.


Assuntos
Lactobacillus/imunologia , Probióticos/administração & dosagem , Animais , Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/metabolismo , Técnicas de Cocultura , Citocinas/biossíntese , Expressão Gênica , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Mucosa/imunologia , Mucosa/metabolismo , Mucosa/patologia , Nódulos Linfáticos Agregados/imunologia , Nódulos Linfáticos Agregados/metabolismo , Suínos , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismo , Desmame
15.
BMC Microbiol ; 14: 126, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24886142

RESUMO

BACKGROUND: Previous findings suggested that Lactobacillus rhamnosus CRL1505 is able to increase resistance of children to intestinal viral infections. However, the intestinal cells, cytokines and receptors involved in the immunoregulatory effect of this probiotic strain have not been fully characterized. RESULTS: We aimed to gain insight into the mechanisms involved in the immunomodulatory effect of the CRL1505 strain and therefore evaluated in vitro the crosstalk between L. rhamnosus CRL1505, porcine intestinal epithelial cells (IECs) and antigen presenting cells (APCs) from swine Peyer's patches in order to deepen our knowledge about the mechanisms, through which this strain may help preventing viral diarrhoea episodes. L. rhamnosus CRL1505 was able to induce IFN-α and -ß in IECs and improve the production of type I IFNs in response to poly(I:C) challenge independently of Toll-like receptor (TLR)-2 or TLR9 signalling. In addition, the CRL1505 strain induced mRNA expression of IL-6 and TNF-α via TLR2 in IECs. Furthermore, the strain significantly increased surface molecules expression and cytokine production in intestinal APCs. The improved Th1 response induced by L. rhamnosus CRL1505 was triggered by TLR2 signalling and included augmented expression of MHC-II and co-stimulatory molecules and expression of IL-1ß, IL-6, and IFN-γ in APCs. IL-10 was also significantly up-regulated by CRL1505 in APCs. CONCLUSIONS: It was recently reviewed the emergence of TLR agonists as new ways to transform antiviral treatments by introducing panviral therapeutics with less adverse effects than IFN therapies. The use of L. rhamnosus CRL1505 as modulator of innate immunity and inductor of antiviral type I IFNs, IFN-γ, and regulatory IL-10 clearly offers the potential to overcome this challenge.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Células Apresentadoras de Antígenos/virologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Fatores Imunológicos/farmacologia , Lacticaseibacillus rhamnosus/imunologia , Probióticos/farmacologia , Animais , Células Cultivadas , Citocinas/biossíntese , Citocinas/genética , Perfilação da Expressão Gênica , Antígenos de Histocompatibilidade Classe II/biossíntese , Antígenos de Histocompatibilidade Classe II/genética , Receptores Imunológicos/biossíntese , Receptores Imunológicos/genética , Suínos
16.
Microbiol Immunol ; 58(7): 416-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24888715

RESUMO

The present study evaluated the effect of nasally given Lactobacillus rhamnosus CRL1505 on the immunocoagulative response during pneumococcal infection in immunocompetent mice. In addition, we aimed to gain insight into the mechanism involved in the immunomodulatory effect of the L. rhamnosus CRL1505 strain by evaluating the role of TLR2. Results showed that nasally given L. rhamnosus CRL1505 effectively regulates inflammation and hemostatic alterations during the pneumococcal infection. Immunobiotic treatment significantly reduced permeability of the bronchoalveolar-capillary barrier, and general cytotoxicity, decreasing lung tissue damage. The CRL1505 strain improved the production of TNF-α, IFN-γ, and IL-10 after pneumococcal challenge. In addition, increased TM and TF expressions were found in lungs of L. rhamnosus CRL1505-treated mice. Moreover, we demonstrated, for the first time, that the TLR2 signaling pathway has a role in the induction of IFN-γ and IL-10 and in the reduction of TF. The results also allow us to speculate that a PRR, other than TLR2, may mediate the immunobiotic activity of L. rhamnosus CRL1505 and could explain changes in TNF-α and TM.


Assuntos
Coagulação Sanguínea , Imunomodulação , Lacticaseibacillus rhamnosus/imunologia , Pneumonia Pneumocócica/imunologia , Pneumonia Pneumocócica/metabolismo , Streptococcus pneumoniae/imunologia , Receptor 2 Toll-Like/metabolismo , Animais , Líquido da Lavagem Broncoalveolar/citologia , Citocinas/metabolismo , Modelos Animais de Doenças , Contagem de Leucócitos , Masculino , Camundongos , Pneumonia Pneumocócica/sangue
18.
Front Microbiol ; 15: 1408624, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962125

RESUMO

Introduction: Levilactobacillus brevis CRL 2013, a plant-derived lactic acid bacterium (LAB) with immunomodulatory properties, has emerged as an efficient producer of γ-aminobutyric acid (GABA). Notably, not all LAB possess the ability to produce GABA, highlighting the importance of specific genetic and environmental conditions for GABA synthesis. This study aimed to elucidate the intriguing GABA-producing machinery of L. brevis CRL 2013 and support its potential for safe application through comprehensive genome analysis. Methods: A comprehensive genome analysis of L. brevis CRL 2013 was performed to identify the presence of antibiotic resistance genes, virulence markers, and genes associated with the glutamate decarboxylase system, which is essential for GABA biosynthesis. Then, an optimized chemically defined culture medium (CDM) was supplemented with monosodium glutamate (MSG) and yeast extract (YE) to analyze their influence on GABA production. Proteomic and transcriptional analyses were conducted to assess changes in protein and gene expression related to GABA production. Results: The absence of antibiotic resistance genes and virulence markers in the genome of L. brevis CRL 2013 supports its safety for potential probiotic applications. Genes encoding the glutamate decarboxylase system, including two gad genes (gadA and gadB) and the glutamate antiporter gene (gadC), were identified. The gadB gene is located adjacent to gadC, while gadA resides separately on the chromosome. The transcriptional regulator gadR was found upstream of gadC, with transcriptional analyses demonstrating cotranscription of gadR with gadC. Although MSG supplementation alone did not activate GABA synthesis, the addition of YE significantly enhanced GABA production in the optimized CDM containing glutamate. Proteomic analysis revealed minimal differences between MSG-supplemented and non-supplemented CDM cultures, whereas YE supplementation resulted in significant proteomic changes, including upregulation of GadB. Transcriptional analysis confirmed increased expression of gadB and gadR upon YE supplementation, supporting its role in activating GABA production. Conclusion: These findings provide valuable insights into the influence of nutrient composition on GABA production. Furthermore, they unveil the potential of L. brevis CRL 2013 as a safe, nonpathogenic strain with valuable biotechnological traits which can be further leveraged for its probiotic potential in the food industry.

19.
Front Microbiol ; 15: 1324999, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38343714

RESUMO

The emergence and spread of antibiotic resistance threat forced to explore alternative strategies for improving the resistance to pathogens in livestock production. Probiotic lactic acid bacteria represent an alternative for this objective. In this study, seven Lactiplantibacillus plantarum strains from porcine colostrum and milk were isolated, identified and characterized in terms of their abilities to modulate immunity in porcine intestinal epithelial (PIE) cells. Then, two potential immunoregulatory strains were studied in terms of their ability to utilize and grow in wakame (Undaria pinnafida). Isolates were identified by 16S rRNA gene and evaluated by studying their interaction with PIE cells. The expressions of peptidoglycan recognition proteins (PGRPs), nucleotide-binding oligomerization domain (NODs), host defense peptides (pBD), and type I interferons (IFNs) were evaluated by RT-qPCR. The strain 4M4417 showed a remarkable capacity to differentially regulate the expression of PGRP1, PGRP3, NOD1, NOD2, and pBD1 in PIE cells. On the other hand, the strain 4M4326 was the most efficient to improve the expression of IFN-α and IFN-ß in PIE cells challenged with poly (I:C). Both L. plantarum 4M4326 and 4M4417 were characterized in terms of their ability to utilize wakame. Results demonstrated that both strains efficiently grew in wakame-based broth. Our results suggest that L. planatrum 4M4326 and 4M4417 are interesting candidates to develop immunomodulatory feeds based on wakame utilization. These new immunosynbiotic feeds could help to reduce severity of intestinal infections and improve immune health status in pigs.

20.
Nutrients ; 16(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732619

RESUMO

Functional foods with probiotics are safe and effective dietary supplements to improve overweight and obesity. Thus, altering the intestinal microflora may be an effective approach for controlling or preventing obesity. This review aims to summarize the experimental method used to study probiotics and obesity, and recent advances in probiotics against obesity. In particular, we focused on studies (in vitro and in vivo) that used probiotics to treat obesity and its associated comorbidities. Several in vitro and in vivo (animal and human clinical) studies conducted with different bacterial species/strains have reported that probiotics promote anti-obesity effects by suppressing the differentiation of pre-adipocytes through immune cell activation, maintaining the Th1/Th2 cytokine balance, altering the intestinal microbiota composition, reducing the lipid profile, and regulating energy metabolism. Most studies on probiotics and obesity have shown that probiotics are responsible for a notable reduction in weight gain and body mass index. It also increases the levels of anti-inflammatory adipokines and decreases those of pro-inflammatory adipokines in the blood, which are responsible for the regulation of glucose and fatty acid breakdown. Furthermore, probiotics effectively increase insulin sensitivity and decrease systemic inflammation. Taken together, the intestinal microbiota profile found in overweight individuals can be modified by probiotic supplementation which can create a promising environment for weight loss along enhancing levels of adiponectin and decreasing leptin, tumor necrosis factor (TNF)-α, interleukin (IL)-6, monocyte chemotactic protein (MCP)-1, and transforming growth factor (TGF)-ß on human health.


Assuntos
Adipogenia , Anti-Inflamatórios , Microbioma Gastrointestinal , Obesidade , Probióticos , Probióticos/farmacologia , Probióticos/uso terapêutico , Humanos , Obesidade/microbiologia , Animais , Anti-Inflamatórios/farmacologia , Inflamação , Adipocinas/sangue
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa