Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2322923121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739798

RESUMO

The ubiquitin-proteasome system is essential to all eukaryotes and has been shown to be critical to parasite survival as well, including Plasmodium falciparum, the causative agent of the deadliest form of malarial disease. Despite the central role of the ubiquitin-proteasome pathway to parasite viability across its entire life-cycle, specific inhibitors targeting the individual enzymes mediating ubiquitin attachment and removal do not currently exist. The ability to disrupt P. falciparum growth at multiple developmental stages is particularly attractive as this could potentially prevent both disease pathology, caused by asexually dividing parasites, as well as transmission which is mediated by sexually differentiated parasites. The deubiquitinating enzyme PfUCHL3 is an essential protein, transcribed across both human and mosquito developmental stages. PfUCHL3 is considered hard to drug by conventional methods given the high level of homology of its active site to human UCHL3 as well as to other UCH domain enzymes. Here, we apply the RaPID mRNA display technology and identify constrained peptides capable of binding to PfUCHL3 with nanomolar affinities. The two lead peptides were found to selectively inhibit the deubiquitinase activity of PfUCHL3 versus HsUCHL3. NMR spectroscopy revealed that the peptides do not act by binding to the active site but instead block binding of the ubiquitin substrate. We demonstrate that this approach can be used to target essential protein-protein interactions within the Plasmodium ubiquitin pathway, enabling the application of chemically constrained peptides as a novel class of antimalarial therapeutics.


Assuntos
Peptídeos , Plasmodium falciparum , Proteínas de Protozoários , Ubiquitina Tiolesterase , Plasmodium falciparum/enzimologia , Plasmodium falciparum/metabolismo , Plasmodium falciparum/efeitos dos fármacos , Ubiquitina Tiolesterase/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética , Humanos , Peptídeos/química , Peptídeos/metabolismo , Peptídeos/farmacologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/genética , Proteínas de Protozoários/antagonistas & inibidores , Antimaláricos/farmacologia , Antimaláricos/química , Ubiquitina/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/tratamento farmacológico
2.
J Am Chem Soc ; 146(12): 8058-8070, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38491946

RESUMO

Thiopeptides make up a group of structurally complex peptidic natural products holding promise in bioengineering applications. The previously established thiopeptide/mRNA display platform enables de novo discovery of natural product-like thiopeptides with designed bioactivities. However, in contrast to natural thiopeptides, the discovered structures are composed predominantly of proteinogenic amino acids, which results in low metabolic stability in many cases. Here, we redevelop the platform and demonstrate that the utilization of compact reprogrammed genetic codes in mRNA display libraries can lead to the discovery of thiopeptides predominantly composed of nonproteinogenic structural elements. We demonstrate the feasibility of our designs by conducting affinity selections against Traf2- and NCK-interacting kinase (TNIK). The experiment identified a series of thiopeptides with high affinity to the target protein (the best KD = 2.1 nM) and kinase inhibitory activity (the best IC50 = 0.15 µM). The discovered compounds, which bore as many as 15 nonproteinogenic amino acids in an 18-residue macrocycle, demonstrated high metabolic stability in human serum with a half-life of up to 99 h. An X-ray cocrystal structure of TNIK in complex with a discovered thiopeptide revealed how nonproteinogenic building blocks facilitate the target engagement and orchestrate the folding of the thiopeptide into a noncanonical conformation. Altogether, the established platform takes a step toward the discovery of thiopeptides with high metabolic stability for early drug discovery applications.


Assuntos
Aminoácidos , Peptídeos , Humanos , Peptídeos/química , Aminoácidos/química , Código Genético , RNA Mensageiro
3.
Int J Mol Sci ; 25(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38673782

RESUMO

Mesenchymal stem cells (MSC) attract an increasing amount of attention due to their unique therapeutic properties. Yet, MSC can undergo undesirable genetic and epigenetic changes during their propagation in vitro. In this study, we investigated whether polyploidy can compromise MSC oncological safety and therapeutic properties. For this purpose, we compared the impact of polyploidy on the transcriptome of cancer cells and MSC of various origins (bone marrow, placenta, and heart). First, we identified genes that are consistently ploidy-induced or ploidy-repressed through all comparisons. Then, we selected the master regulators using the protein interaction enrichment analysis (PIEA). The obtained ploidy-related gene signatures were verified using the data gained from polyploid and diploid populations of early cardiomyocytes (CARD) originating from iPSC. The multistep bioinformatic analysis applied to the cancer cells, MSC, and CARD indicated that polyploidy plays a pivotal role in driving the cell into hypertranscription. It was evident from the upregulation of gene modules implicated in housekeeping functions, stemness, unicellularity, DNA repair, and chromatin opening by means of histone acetylation operating via DNA damage associated with the NUA4/TIP60 complex. These features were complemented by the activation of the pathways implicated in centrosome maintenance and ciliogenesis and by the impairment of the pathways related to apoptosis, the circadian clock, and immunity. Overall, our findings suggest that, although polyploidy does not induce oncologic transformation of MSC, it might compromise their therapeutic properties because of global epigenetic changes and alterations in fundamental biological processes. The obtained results can contribute to the development and implementation of approaches enhancing the therapeutic properties of MSC by removing polyploid cells from the cell population.


Assuntos
Apoptose , Células-Tronco Mesenquimais , Poliploidia , Transcriptoma , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Humanos , Apoptose/genética , Neoplasias/genética , Neoplasias/patologia , Neoplasias/metabolismo , Cílios/metabolismo , Cílios/genética , Simulação por Computador , Feminino , Perfilação da Expressão Gênica , Epigênese Genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Biologia Computacional/métodos
4.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37047167

RESUMO

Using meta-analyses, we introduce a unicellular attractor (UCA) model integrating essential features of the 'atavistic reversal', 'cancer attractor', 'somatic mutation', 'genome chaos', and 'tissue organization field' theories. The 'atavistic reversal' theory is taken as a keystone. We propose a possible mechanism of this reversal, its refinement called 'gradual atavism', and evidence for the 'serial atavism' model. We showed the gradual core-to-periphery evolutionary growth of the human interactome resulting in the higher protein interaction density and global interactome centrality in the UC center. In addition, we revealed that UC genes are more actively expressed even in normal cells. The modeling of random walk along protein interaction trajectories demonstrated that random alterations in cellular networks, caused by genetic and epigenetic changes, can result in a further gradual activation of the UC center. These changes can be induced and accelerated by cellular stress that additionally activates UC genes (especially during cell proliferation), because the genes involved in cellular stress response and cell cycle are mostly of UC origin. The functional enrichment analysis showed that cancer cells demonstrate the hyperactivation of energetics and the suppression of multicellular genes involved in communication with the extracellular environment (especially immune surveillance). Collectively, these events can unleash selfish cell behavior aimed at survival at all means. All these changes are boosted by polyploidization. The UCA model may facilitate an understanding of oncogenesis and promote the development of therapeutic strategies.


Assuntos
Braquiúros , Neoplasias , Animais , Humanos , Evolução Biológica , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias/genética
5.
Int J Mol Sci ; 24(8)2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37108224

RESUMO

Many cardiovascular diseases originate from growth retardation, inflammation, and malnutrition during early postnatal development. The nature of this phenomenon is not completely understood. Here we aimed to verify the hypothesis that systemic inflammation triggered by neonatal lactose intolerance (NLI) may exert long-term pathologic effects on cardiac developmental programs and cardiomyocyte transcriptome regulation. Using the rat model of NLI triggered by lactase overloading with lactose and the methods of cytophotometry, image analysis, and mRNA-seq, we evaluated cardiomyocyte ploidy, signs of DNA damage, and NLI-associated long-term transcriptomic changes of genes and gene modules that differed qualitatively (i.e., were switched on or switched off) in the experiment vs. the control. Our data indicated that NLI triggers the long-term animal growth retardation, cardiomyocyte hyperpolyploidy, and extensive transcriptomic rearrangements. Many of these rearrangements are known as manifestations of heart pathologies, including DNA and telomere instability, inflammation, fibrosis, and reactivation of fetal gene program. Moreover, bioinformatic analysis identified possible causes of these pathologic traits, including the impaired signaling via thyroid hormone, calcium, and glutathione. We also found transcriptomic manifestations of increased cardiomyocyte polyploidy, such as the induction of gene modules related to open chromatin, e.g., "negative regulation of chromosome organization", "transcription" and "ribosome biogenesis". These findings suggest that ploidy-related epigenetic alterations acquired in the neonatal period permanently rewire gene regulatory networks and alter cardiomyocyte transcriptome. Here we provided first evidence indicating that NLI can be an important trigger of developmental programming of adult cardiovascular disease. The obtained results can help to develop preventive strategies for reducing the NLI-associated adverse effects of inflammation on the developing cardiovascular system.


Assuntos
Intolerância à Lactose , Miócitos Cardíacos , Animais , Ratos , Transcriptoma , Animais Recém-Nascidos , Intolerância à Lactose/patologia , Inflamação/genética , Inflamação/patologia , Transtornos do Crescimento/patologia
6.
Int J Mol Sci ; 24(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37373016

RESUMO

A comparative study of the electronic structure of the salen ligand in the H2(Salen) molecule and the [Ni(Salen)] complex was performed using the experimental methods of XPS, UV PES, and NEXAFS spectroscopy along with DFT calculations. Significant chemical shifts of +1.0 eV (carbon), +1.9 eV (nitrogen), and -0.4 eV (oxygen) were observed in the 1s PE spectra of the salen ligand atoms when passing from a molecule to a complex, unambiguously indicating a substantial redistribution of the valence electron density between these atoms. It is proposed that the electron density transfer to the O atoms in [Ni(Salen)] occurred not only from the Ni atom, but also from the N and C atoms. This process seemed to be realized through the delocalized conjugated π-system of the phenol C 2p electronic states of the ligand molecule. The DFT calculations (total and partial DOS) for the valence band H2(Salen) and [Ni(Salen)] described well the spectral shape of the UV PE spectra of both compounds and confirmed their experimental identification. An analysis of the N and O 1s NEXAFS spectra clearly indicated that the atomic structure of the ethylenediamine and phenol fragments was retained upon passing from the free salen ligand to the nickel complex.


Assuntos
Etilenodiaminas , Níquel , Ligantes , Etilenodiaminas/química , Transporte de Elétrons , Níquel/química
7.
J Am Chem Soc ; 144(44): 20332-20341, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36282922

RESUMO

Bioengineering of ribosomally synthesized and post-translationally modified peptides (RiPPs) is an emerging approach to explore the diversity of pseudo-natural product structures for drug discovery purposes. However, despite the initial advances in this area, bioactivity reprogramming of multienzyme RiPP biosynthetic pathways remains a major challenge. Here, we report a platform for de novo discovery of functional thiopeptides based on reengineered biosynthesis of lactazole A, a RiPP natural product assembled by five biosynthetic enzymes. The platform combines in vitro biosynthesis of lactazole-like thiopeptides and mRNA display to prepare and screen large (≥1012) combinatorial libraries of pseudo-natural products. We demonstrate the utility of the developed protocols in an affinity selection against Traf2- and NCK-interacting kinase (TNIK), a protein involved in several cancers, which yielded a plethora of candidate thiopeptides. Of the 11 synthesized compounds, 9 had high affinities for the target kinase (best KD = 1.2 nM) and 10 inhibited its enzymatic activity (best Ki = 3 nM). X-ray structural analysis of the TNIK/thiopeptide interaction revealed the unique mode of substrate-competitive inhibition exhibited by two of the discovered compounds. The thiopeptides internalized to the cytosol of HEK293H cells as efficiently as the known cell-penetrating peptide Tat (4-6 µM). Accordingly, the most potent compound, TP15, inhibited TNIK in HCT116 cells. Altogether, our platform enables the exploration of pseudo-natural thiopeptides with favorable pharmacological properties in drug discovery applications.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Produtos Biológicos/metabolismo , Processamento de Proteína Pós-Traducional , Peptídeos/química , Vias Biossintéticas , Descoberta de Drogas
8.
Int J Mol Sci ; 23(7)2022 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-35408902

RESUMO

DNA replication during cell proliferation is 'vertical' copying, which reproduces an initial amount of genetic information. Polyploidy, which results from whole-genome duplication, is a fundamental complement to vertical copying. Both organismal and cell polyploidy can emerge via premature cell cycle exit or via cell-cell fusion, the latter giving rise to polyploid hybrid organisms and epigenetic hybrids of somatic cells. Polyploidy-related increase in biological plasticity, adaptation, and stress resistance manifests in evolution, development, regeneration, aging, oncogenesis, and cardiovascular diseases. Despite the prevalence in nature and importance for medicine, agri- and aquaculture, biological processes and epigenetic mechanisms underlying these fundamental features largely remain unknown. The evolutionarily conserved features of polyploidy include activation of transcription, response to stress, DNA damage and hypoxia, and induction of programs of morphogenesis, unicellularity, and longevity, suggesting that these common features confer adaptive plasticity, viability, and stress resistance to polyploid cells and organisms. By increasing cell viability, polyploidization can provide survival under stressful conditions where diploid cells cannot survive. However, in somatic cells it occurs at the expense of specific function, thus promoting developmental programming of adult cardiovascular diseases and increasing the risk of cancer. Notably, genes arising via evolutionary polyploidization are heavily involved in cancer and other diseases. Ploidy-related changes of gene expression presumably originate from chromatin modifications and the derepression of bivalent genes. The provided evidence elucidates the role of polyploidy in evolution, development, aging, and carcinogenesis, and may contribute to the development of new strategies for promoting regeneration and preventing cardiovascular diseases and cancer.


Assuntos
Doenças Cardiovasculares , Neoplasias , Adaptação Fisiológica , Carcinogênese , Doenças Cardiovasculares/genética , Diploide , Humanos , Neoplasias/genética , Poliploidia
9.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077092

RESUMO

Polyploid cells demonstrate biological plasticity and stress adaptation in evolution; development; and pathologies, including cardiovascular diseases, neurodegeneration, and cancer. The nature of ploidy-related advantages is still not completely understood. Here, we summarize the literature on molecular mechanisms underlying ploidy-related adaptive features. Polyploidy can regulate gene expression via chromatin opening, reawakening ancient evolutionary programs of embryonality. Chromatin opening switches on genes with bivalent chromatin domains that promote adaptation via rapid induction in response to signals of stress or morphogenesis. Therefore, stress-associated polyploidy can activate Myc proto-oncogenes, which further promote chromatin opening. Moreover, Myc proto-oncogenes can trigger polyploidization de novo and accelerate genome accumulation in already polyploid cells. As a result of these cooperative effects, polyploidy can increase the ability of cells to search for adaptive states of cellular programs through gene regulatory network rewiring. This ability is manifested in epigenetic plasticity associated with traits of stemness, unicellularity, flexible energy metabolism, and a complex system of DNA damage protection, combining primitive error-prone unicellular repair pathways, advanced error-free multicellular repair pathways, and DNA damage-buffering ability. These three features can be considered important components of the increased adaptability of polyploid cells. The evidence presented here contribute to the understanding of the nature of stress resistance associated with ploidy and may be useful in the development of new methods for the prevention and treatment of cardiovascular and oncological diseases.


Assuntos
Redes Reguladoras de Genes , Poliploidia , Cromatina , Epigênese Genética , Humanos , Proto-Oncogenes
10.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232785

RESUMO

The biogenetic law (recapitulation law) states that ontogenesis recapitulates phylogenesis. However, this law can be distorted by the modification of development. We showed the recapitulation of phylogenesis during the differentiation of various cell types, using a meta-analysis of human single-cell transcriptomes, with the control for cell cycle activity and the improved phylostratigraphy (gene dating). The multipotent progenitors, differentiated from pluripotent embryonic stem cells (ESC), showed the downregulation of unicellular (UC) genes and the upregulation of multicellular (MC) genes, but only in the case of those originating up to the Euteleostomi (bony vertebrates). This picture strikingly resembles the evolutionary profile of regulatory gene expansion due to gene duplication in the human genome. The recapitulation of phylogenesis in the induced pluripotent stem cells (iPSC) during their differentiation resembles the ESC pattern. The unipotent erythroblasts differentiating into erythrocytes showed the downregulation of UC genes and the upregulation of MC genes originating after the Euteleostomi. The MC interactome neighborhood of a protein encoded by a UC gene reverses the gene expression pattern. The functional analysis showed that the evolved environment of the UC proteins is typical for protein modifiers and signaling-related proteins. Besides a fundamental aspect, this approach can provide a unified framework for cancer biology and regenerative/rejuvenation medicine because oncogenesis can be defined as an atavistic reversal to a UC state, while regeneration and rejuvenation require an ontogenetic reversal.


Assuntos
Células-Tronco Pluripotentes Induzidas , Neoplasias , Animais , Biologia , Diferenciação Celular/genética , Células-Tronco Embrionárias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Medicina Regenerativa
11.
Int J Mol Sci ; 23(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35682886

RESUMO

The valence band photoemission (VB PE) spectra of the [Ni(Salen)] molecular complex were measured by ultraviolet, soft X-ray and resonant photoemission (ResPE) using photons with energies ranging from 21.2 eV to 860 eV. It was found that the Ni 3d atomic orbitals' (AOs) contributions are most significant for molecular orbitals (MOs), which are responsible for the low-energy PE band at a binding energy of 3.8 eV in the VB PE spectra. In turn, the PE bands in the binding energies range of 8-16 eV are due to the photoionization of the MOs of the [Ni(Salen)] complex with dominant contributions from C 2p AOs. A detailed consideration was made for the ResPE spectra obtained using photons with absorption resonance energies in the Ni 2p3/2, N 1s, and O 1s Near-Edge X-ray Absorption Fine Structure (NEXAFS) spectra. A strong increase in the intensity of the PE band ab was found when using photons with an energy 854.4 eV in the Ni 2p3/2 NEXAFS spectrum. This finding is due to the high probability of the participator-Auger decay of the Ni 2p3/2-13d9 excitation and confirms the relationship between the PE band ab with the Ni 3d-derived MOs.


Assuntos
Fótons , Etilenodiaminas , Espectroscopia Fotoeletrônica , Radiografia , Raios X
12.
Molecules ; 27(22)2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36431825

RESUMO

A series of potassium salts of di- and tri-arylsubstituted cyclopentadienes has been obtained by the metalation of the corresponding cyclopentadienes with benzylpotassium in THF media. Crystals of all compounds, afforded by recrystallization from THF/hexane, diglyme-THF/hexane and toluene/hexane mixtures, have been studied by X-ray diffraction. All studied potassium cyclopentadienides exhibit the luminescence at room temperature and overall quantum yield of photoluminescence for potassium salt of diarylsubstituted cyclopentadiene is 18%.

13.
J Am Chem Soc ; 143(33): 13358-13369, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34392675

RESUMO

Formation of dehydroalanine and dehydrobutyrine residues via tRNA-dependent dehydration of serine and threonine is a key post-translational modification in the biosynthesis of lanthipeptide and thiopeptide RiPPs. The dehydration process involves two reactions, wherein the O-glutamyl Ser/Thr intermediate, accessed by a dedicated enzyme utilizing Glu-tRNAGlu as the acyl donor, is recognized by the second enzyme, referred to as the glutamate elimination domain (ED), which catalyzes the eponymous reaction yielding a dehydroamino acid. Many details of ED catalysis remain unexplored because the scope of available substrates for testing is limited to those that the upstream enzymes can furnish. Here, we report two complementary strategies for direct, nonenzymatic access to diverse ED substrates. We establish that a thiol-thioester exchange reaction between a Cys-containing peptide and an α thioester of glutamic acid leads an S-glutamylated intermediate which can act as a substrate for EDs. Furthermore, we show that the native O-glutamylated substrates can be accessible from S-glutamylated peptides upon a site-specific S-to-O acyl transfer reaction. Combined with flexible in vitro translation utilized for rapid peptide production, these chemistries enabled us to dissect the substrate recognition requirements of three known EDs. Our results establish that EDs are uniquely promiscuous enzymes capable of acting on substrates with arbitrary amino acid sequences and performing retro-Michael reaction beyond the canonical glutamate elimination. To facilitate substrate recruitment, EDs apparently engage in nonspecific hydrophobic interactions with their substrates. Altogether, our results establish the substrate scope of EDs and provide clues to their catalysis.


Assuntos
Ácido Glutâmico/metabolismo , Peptídeos/metabolismo , Ácido Glutâmico/química , Estrutura Molecular , Peptídeos/química
14.
Phys Chem Chem Phys ; 23(18): 11015-11027, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33942044

RESUMO

The nature and structure of occupied and empty valence electronic states (molecular orbitals, MOs) of the [Ni(Salen)] molecular complex (NiO2N2C16H14) have been studied by X-ray photoemission and absorption spectroscopy combined with density functional theory (DFT) calculations. As a result, the composition of the high-lying occupied and low-lying unoccupied electronic states has been identified. In particular, the highest occupied molecular orbital (HOMO) of the complex is found to be predominantly located on the phenyl rings of the salen ligand, while the states associated with the occupied Ni 3d-derived molecular orbitals (MOs) are at higher binding energies. The lowest unoccupied molecular orbital (LUMO) is also located on the salen ligand and is formed by the 2pπ orbitals of carbon atoms in phenyl groups of the salen macrocycle. The unoccupied MOs above the LUMO reflect σ- and π-bonding between Ni and its nearest neighbours. All valence states have highly mixed character. The specific nature of the unoccupied Ni 3d-derived σ-MO is a consequence of donor-acceptor chemical bonding in [Ni(Salen)].

15.
Proc Natl Acad Sci U S A ; 115(23): E5298-E5306, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784819

RESUMO

Chemical methods have enabled the total synthesis of protein molecules of ever-increasing size and complexity. However, methods to engineer synthetic proteins comprising noncanonical amino acids have not kept pace, even though this capability would be a distinct advantage of the total synthesis approach to protein science. In this work, we report a platform for protein engineering based on the screening of synthetic one-bead one-compound protein libraries. Screening throughput approaching that of cell surface display was achieved by a combination of magnetic bead enrichment, flow cytometry analysis of on-bead screens, and high-throughput MS/MS-based sequencing of identified active compounds. Direct screening of a synthetic protein library by these methods resulted in the de novo discovery of mirror-image miniprotein-based binders to a ∼150-kDa protein target, a task that would be difficult or impossible by other means.


Assuntos
Técnicas de Química Combinatória/métodos , Biblioteca de Peptídeos , Engenharia de Proteínas/métodos , Proteínas/síntese química , Aminoácidos , Citometria de Fluxo/métodos , Humanos , Microesferas , Ligação Proteica , Proteínas/genética , Espectrometria de Massas em Tandem/métodos
16.
Int J Mol Sci ; 22(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34769071

RESUMO

The growth of complexity in evolution is a most intriguing phenomenon. Using gene phylostratigraphy, we showed this growth (as reflected in regulatory mechanisms) in the human genome, tracing the path from prokaryotes to hominids. Generally, the different regulatory gene families expanded at different times, yet only up to the Euteleostomi (bony vertebrates). The only exception was the expansion of transcription factors (TF) in placentals; however, we argue that this was not related to increase in general complexity. Surprisingly, although TF originated in the Prokaryota while chromatin appeared only in the Eukaryota, the expansion of epigenetic factors predated the expansion of TF. Signaling receptors, tumor suppressors, oncogenes, and aging- and disease-associated genes (indicating vulnerabilities in terms of complex organization and strongly enrichment in regulatory genes) also expanded only up to the Euteleostomi. The complexity-related gene properties (protein size, number of alternative splicing mRNA, length of untranslated mRNA, number of biological processes per gene, number of disordered regions in a protein, and density of TF-TF interactions) rose in multicellular organisms and declined after the Euteleostomi, and possibly earlier. At the same time, the speed of protein sequence evolution sharply increased in the genes that originated after the Euteleostomi. Thus, several lines of evidence indicate that molecular mechanisms of complexity growth were changing with time, and in the phyletic lineage leading to humans, the most salient shift occurred after the basic vertebrate body plan was fixed with bony skeleton. The obtained results can be useful for evolutionary medicine.


Assuntos
Evolução Molecular , Redes Reguladoras de Genes , Genoma Humano , Animais , Epigênese Genética , Hominidae/genética , Humanos , Família Multigênica , Oncogenes , Células Procarióticas/metabolismo , Fatores de Transcrição/genética
17.
Int J Mol Sci ; 22(9)2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33925224

RESUMO

BACKGROUND: Cancer stem cells' (CSCs) self-maintenance is regulated via the pluripotency pathways promoting the most aggressive tumor phenotype. This study aimed to use the activity of these pathways for the CSCs' subpopulation enrichment and separating cells characterized by the OCT4 and SOX2 expression. METHODS: To select and analyze CSCs, we used the SORE6x lentiviral reporter plasmid for viral transduction of colon adenocarcinoma cells. Additionally, we assessed cell chemoresistance, clonogenic, invasive and migratory activity and the data of mRNA-seq and intrinsic disorder predisposition protein analysis (IDPPA). RESULTS: We obtained the line of CSC-like cells selected on the basis of the expression of the OCT4 and SOX2 stem cell factors. The enriched CSC-like subpopulation had increased chemoresistance as well as clonogenic and migration activities. The bioinformatic analysis of mRNA seq data identified the up-regulation of pluripotency, development, drug resistance and phototransduction pathways, and the downregulation of pathways related to proliferation, cell cycle, aging, and differentiation. IDPPA indicated that CSC-like cells are predisposed to increased intrinsic protein disorder. CONCLUSION: The use of the SORE6x reporter construct for CSCs enrichment allows us to obtain CSC-like population that can be used as a model to search for the new prognostic factors and potential therapeutic targets for colon cancer treatment.


Assuntos
Adenocarcinoma/patologia , Neoplasias do Colo/patologia , Células-Tronco Neoplásicas/metabolismo , Adenocarcinoma/genética , Adulto , Biomarcadores Tumorais/isolamento & purificação , Técnicas de Cultura de Células/métodos , Ciclo Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias do Colo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Neoplásicas/patologia , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Cultura Primária de Células , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo
18.
J Am Chem Soc ; 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33211968

RESUMO

We report a method for the high-throughput reactivity profiling of genetically encoded libraries as a tool to study substrate fitness landscapes for RiPP (ribosomally synthesized and post-translationally modified peptide) biosynthetic enzymes. This method allowed us to rapidly analyze the substrate preferences of the lactazole biosynthetic pathway using a saturation mutagenesis mRNA display library of lactazole precursor peptides. We demonstrate that the assay produces accurate and reproducible in vitro data, enabling the quantification of reaction yields with temporal resolution. Our results recapitulate the previously established knowledge on lactazole biosynthesis and expand it by identifying the extent of substrate promiscuity exhibited by the enzymes. This work lays a foundation for the construction and screening of mRNA display-based combinatorial thiopeptide libraries for the discovery of lactazole-inspired thiopeptides with de novo designed biological activities.

19.
J Am Chem Soc ; 142(32): 13886-13897, 2020 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-32664727

RESUMO

Enzymes involved in the biosynthesis of ribosomally synthesized and post-translationally modified peptides (RiPPs) often have relaxed specificity profiles and are able to modify diverse substrates. When several such enzymes act together during precursor peptide maturation, a multitude of products can form, yet usually the biosynthesis converges on a single natural product. For the most part, the mechanisms controlling the integrity of RiPP assembly remain elusive. Here, we investigate the biosynthesis of lactazole A, a model thiopeptide produced by five promiscuous enzymes from a ribosomal precursor peptide. Using our in vitro thiopeptide production (FIT-Laz) system, we determine the order of biosynthetic events at the individual modification level and supplement this study with substrate scope analysis for participating enzymes. Our results reveal an unusual but well-defined assembly process where cyclodehydration, dehydroalanine formation, and azoline dehydrogenation events are intertwined due to minimal substrate recognition requirements characteristic of every lactazole enzyme. Additionally, each enzyme plays a role in directing LazBF-mediated dehydroalanine formation, which emerges as the central theme of the assembly process. Cyclodehydratase LazDE discriminates a single serine residue for azoline formation, leaving the remaining five as potential dehydratase substrates. Pyridine synthase LazC exerts kinetic control over LazBF to prevent the formation of overdehydrated thiopeptides, whereas the coupling of dehydrogenation to dehydroalanine installation impedes generation of underdehydrated products. Altogether, our results indicate that substrate-level cooperation between the biosynthetic enzymes maintains the integrity of lactazole assembly. This work advances our understanding of RiPP biosynthesis processes and facilitates thiopeptide bioengineering.


Assuntos
Hidroliases/metabolismo , Óxido Nítrico Sintase/metabolismo , Estrutura Molecular , Streptomyces/química
20.
Anal Biochem ; 598: 113694, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32217095

RESUMO

Complex heterogeneous systems, such as micelles or blood plasma, represent a particularly challenging environment to measure the catalytic parameters of some enzymes, including l-asparaginase. Existing methods are strongly interfered by the presence of plasma proteins, amino acids, as well as other components of plasma. Here we show that FTIR spectroscopy enables continuous real-time measurement of catalytic activity of l-asparaginase, in native and in PEG-chitosan conjugated form, in aqueous solutions as well as in heterogeneous non-transparent multicomponent systems, including colloidal systems or blood plasma, with minimal or no sample preparation. The approach developed is potentially applicable to other enzymatic reactions where the spectroscopic properties of substrate and product do not allow direct measurement with absorption or fluorescence spectroscopy.


Assuntos
Asparaginase/análise , Asparaginase/metabolismo , Biocatálise , Quitosana/química , Humanos , Pectobacterium carotovorum/enzimologia , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa