Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 4(9): e1000174, 2008 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-18773071

RESUMO

Sox10 is a dynamically regulated transcription factor gene that is essential for the development of neural crest-derived and oligodendroglial populations. Developmental genes often require multiple regulatory sequences that integrate discrete and overlapping functions to coordinate their expression. To identify Sox10 cis-regulatory elements, we integrated multiple model systems, including cell-based screens and transposon-mediated transgensis in zebrafish, to scrutinize mammalian conserved, noncoding genomic segments at the mouse Sox10 locus. We demonstrate that eight of 11 Sox10 genomic elements direct reporter gene expression in transgenic zebrafish similar to patterns observed in transgenic mice, despite an absence of observable sequence conservation between mice and zebrafish. Multiple segments direct expression in overlapping populations of neural crest derivatives and glial cells, ranging from pan-Sox10 and pan-neural crest regulatory control to the modulation of expression in subpopulations of Sox10-expressing cells, including developing melanocytes and Schwann cells. Several sequences demonstrate overlapping spatial control, yet direct expression in incompletely overlapping developmental intervals. We were able to partially explain neural crest expression patterns by the presence of head to head SoxE family binding sites within two of the elements. Moreover, we were able to use this transcription factor binding site signature to identify the corresponding zebrafish enhancers in the absence of overall sequence homology. We demonstrate the utility of zebrafish transgenesis as a high-fidelity surrogate in the dissection of mammalian gene regulation, especially those with dynamically controlled developmental expression.


Assuntos
Proteínas de Ligação a DNA/genética , Elementos Facilitadores Genéticos , Proteínas de Grupo de Alta Mobilidade/genética , Crista Neural/metabolismo , Neuroglia/metabolismo , Fatores de Transcrição/genética , Peixe-Zebra/genética , Animais , Animais Geneticamente Modificados , Sítios de Ligação , Sequência Conservada , Proteínas de Ligação a DNA/metabolismo , Embrião não Mamífero/metabolismo , Técnicas de Transferência de Genes , Genoma , Proteínas de Grupo de Alta Mobilidade/metabolismo , Melanócitos/metabolismo , Camundongos , Camundongos Transgênicos , Células NIH 3T3 , Neuroglia/citologia , Fatores de Transcrição SOXE , Células de Schwann/metabolismo , Fatores de Transcrição/metabolismo , Peixe-Zebra/metabolismo
2.
BMC Genomics ; 10: 8, 2009 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-19128492

RESUMO

BACKGROUND: Transcriptional regulatory elements are central to development and interspecific phenotypic variation. Current regulatory element prediction tools rely heavily upon conservation for prediction of putative elements. Recent in vitro observations from the ENCODE project combined with in vivo analyses at the zebrafish phox2b locus suggests that a significant fraction of regulatory elements may fall below commonly applied metrics of conservation. We propose to explore these observations in vivo at the human PHOX2B locus, and also evaluate the potential evidence for genome-wide applicability of these observations through a novel analysis of extant data. RESULTS: Transposon-based transgenic analysis utilizing a tiling path proximal to human PHOX2B in zebrafish recapitulates the observations at the zebrafish phox2b locus of both conserved and non-conserved regulatory elements. Analysis of human sequences conserved with previously identified zebrafish phox2b regulatory elements demonstrates that the orthologous sequences exhibit overlapping regulatory control. Additionally, analysis of non-conserved sequences scattered over 135 kb 5' to PHOX2B, provides evidence of non-conserved regulatory elements positively biased with close proximity to the gene. Furthermore, we provide a novel analysis of data from the ENCODE project, finding a non-uniform distribution of regulatory elements consistent with our in vivo observations at PHOX2B. These observations remain largely unchanged when one accounts for the sequence repeat content of the assayed intervals, when the intervals are sub-classified by biological role (developmental versus non-developmental), or by gene density (gene desert versus non-gene desert). CONCLUSION: While regulatory elements frequently display evidence of evolutionary conservation, a fraction appears to be undetected by current metrics of conservation. In vivo observations at the PHOX2B locus, supported by our analyses of in vitro data from the ENCODE project, suggest that the risk of excluding non-conserved sequences in a search for regulatory elements may decrease as distance from the gene increases. Our data combined with the ENCODE data suggests that this may represent a genome wide trend.


Assuntos
Genoma Humano , Proteínas de Homeodomínio/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição/genética , Animais , Animais Geneticamente Modificados/genética , Sequência de Bases , Sequência Conservada/genética , Embrião não Mamífero , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Peixe-Zebra/genética
3.
Genome Res ; 18(2): 252-60, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18071029

RESUMO

Despite its recognized utility, the extent to which evolutionary sequence conservation-based approaches may systematically overlook functional noncoding sequences remains unclear. We have tiled across sequence encompassing the zebrafish phox2b gene, ultimately evaluating 48 amplicons corresponding to all noncoding sequences therein for enhancer activity in zebrafish. Post hoc analyses of this interval utilizing five commonly used measures of evolutionary constraint (AVID, MLAGAN, SLAGAN, phastCons, WebMCS) demonstrate that each systematically overlooks regulatory sequences. These established algorithms detected only 29%-61% of our identified regulatory elements, consistent with the suggestion that many regulatory sequences may not be readily detected by metrics of sequence constraint. However, we were able to discriminate functional from nonfunctional sequences based upon GC composition and identified position weight matrices (PWM), demonstrating that, in at least one case, deleting sequences containing a subset of these PWMs from one identified regulatory element abrogated its regulatory function. Collectively, these data demonstrate that the noncoding functional component of vertebrate genomes may far exceed estimates predicated on evolutionary constraint.


Assuntos
Biologia Computacional/métodos , Evolução Molecular , Proteínas de Homeodomínio/genética , Sequências Reguladoras de Ácido Nucleico/genética , Fatores de Transcrição/genética , Peixe-Zebra/genética , Animais , Composição de Bases , Sequência de Bases , Componentes do Gene , Proteínas de Homeodomínio/metabolismo , Hibridização In Situ , Dados de Sequência Molecular , Neurônios/metabolismo , Análise de Sequência de DNA , Fatores de Transcrição/metabolismo
4.
Science ; 312(5771): 276-9, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16556802

RESUMO

Evolutionary sequence conservation is an accepted criterion to identify noncoding regulatory sequences. We have used a transposon-based transgenic assay in zebrafish to evaluate noncoding sequences at the zebrafish ret locus, conserved among teleosts, and at the human RET locus, conserved among mammals. Most teleost sequences directed ret-specific reporter gene expression, with many displaying overlapping regulatory control. The majority of human RET noncoding sequences also directed ret-specific expression in zebrafish. Thus, vast amounts of functional sequence information may exist that would not be detected by sequence similarity approaches.


Assuntos
Sequência Conservada , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Proteínas Proto-Oncogênicas c-ret/genética , Sequências Reguladoras de Ácido Nucleico , Peixe-Zebra/genética , Animais , Humanos , Modelos Genéticos , Neurônios/metabolismo , Análise de Sequência de DNA , Takifugu/genética , Transgenes , Peixe-Zebra/embriologia
5.
Nat Protoc ; 1(3): 1297-305, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17406414

RESUMO

Evaluating the biological relevance of the myriad putative regulatory noncoding sequences in vertebrate genomes represents a huge challenge. Functional analyses in vivo have typically relied on costly and labor-intensive transgenic strategies in mice. Transgenesis has also been applied in nonrodent vertebrates, such as zebrafish, but until recently these efforts have been hampered by significant mosaicism and poor rates of germline transmission. We have developed a transgenic strategy in zebrafish based on the Tol2 transposon, a mobile element that was recently identified in another teleost, Medaka. This method takes advantage of the increased efficiency of genome integration that is afforded by this intact DNA transposon, activity that is mediated by the corresponding transposase protein. The approach described in this protocol uses a universal vector system that permits rapid incorporation of DNA that is tagged with sequence targets for site-specific recombination. To evaluate the regulatory potential of a candidate sequence, the desired interval is PCR-amplified using sequence-specific primers that are flanked by the requisite target sites for cloning, and recombined into a universal expression plasmid (pGW_cfosEGFP). Purified recombinant DNAs are then injected into 1-2-cell zebrafish embryos and the resulting reporter expression patterns are analyzed at desired timepoints during development. This system is amenable to large-scale application, facilitating rapid functional analysis of noncoding sequences from both mammalian and teleost species.


Assuntos
Elementos Facilitadores Genéticos/genética , Técnicas de Transferência de Genes , Genômica/métodos , Animais , Primers do DNA , Elementos de DNA Transponíveis/genética , Reação em Cadeia da Polimerase/métodos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa