Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(8): 1358-1369, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37365386

RESUMO

Following infection or vaccination, activated B cells at extrafollicular sites or within germinal centers (GCs) undergo vigorous clonal proliferation. Proliferating lymphocytes have been shown to undertake lactate dehydrogenase A (LDHA)-dependent aerobic glycolysis; however, the specific role of this metabolic pathway in a B cell transitioning from a naïve to a highly proliferative, activated state remains poorly defined. Here, we deleted LDHA in a stage-specific and cell-specific manner. We find that ablation of LDHA in a naïve B cell did not profoundly affect its ability to undergo a bacterial lipopolysaccharide-induced extrafollicular B cell response. On the other hand, LDHA-deleted naïve B cells had a severe defect in their capacities to form GCs and mount GC-dependent antibody responses. In addition, loss of LDHA in T cells severely compromised B cell-dependent immune responses. Strikingly, when LDHA was deleted in activated, as opposed to naïve, B cells, there were only minimal effects on the GC reaction and in the generation of high-affinity antibodies. These findings strongly suggest that naïve and activated B cells have distinct metabolic requirements that are further regulated by niche and cellular interactions.


Assuntos
Linfócitos B , Centro Germinativo , Linfócitos T , Ativação Linfocitária , Comunicação Celular
2.
Nature ; 581(7809): 475-479, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32461639

RESUMO

Intestinal health relies on the immunosuppressive activity of CD4+ regulatory T (Treg) cells1. Expression of the transcription factor Foxp3 defines this lineage, and can be induced extrathymically by dietary or commensal-derived antigens in a process assisted by a Foxp3 enhancer known as conserved non-coding sequence 1 (CNS1)2-4. Products of microbial fermentation including butyrate facilitate the generation of peripherally induced Treg (pTreg) cells5-7, indicating that metabolites shape the composition of the colonic immune cell population. In addition to dietary components, bacteria modify host-derived molecules, generating a number of biologically active substances. This is epitomized by the bacterial transformation of bile acids, which creates a complex pool of steroids8 with a range of physiological functions9. Here we screened the major species of deconjugated bile acids for their ability to potentiate the differentiation of pTreg cells. We found that the secondary bile acid 3ß-hydroxydeoxycholic acid (isoDCA) increased Foxp3 induction by acting on dendritic cells (DCs) to diminish their immunostimulatory properties. Ablating one receptor, the farnesoid X receptor, in DCs enhanced the generation of Treg cells and imposed a transcriptional profile similar to that induced by isoDCA, suggesting an interaction between this bile acid and nuclear receptor. To investigate isoDCA in vivo, we took a synthetic biology approach and designed minimal microbial consortia containing engineered Bacteroides strains. IsoDCA-producing consortia increased the number of colonic RORγt-expressing Treg cells in a CNS1-dependent manner, suggesting enhanced extrathymic differentiation.


Assuntos
Bactérias/metabolismo , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Linfócitos T Reguladores/citologia , Linfócitos T Reguladores/imunologia , Sequência de Aminoácidos , Animais , Bacteroides/metabolismo , Colo/microbiologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Feminino , Fermentação , Microbioma Gastrointestinal , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Consórcios Microbianos , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo
3.
Nat Chem Biol ; 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884806

RESUMO

Impaired redox metabolism is a key contributor to the etiology of many diseases, including primary mitochondrial disorders, cancer, neurodegeneration and aging. However, mechanistic studies of redox imbalance remain challenging due to limited strategies that can perturb redox metabolism in various cellular or organismal backgrounds. Most studies involving impaired redox metabolism have focused on oxidative stress; consequently, less is known about the settings where there is an overabundance of NADH reducing equivalents, termed reductive stress. Here we introduce a soluble transhydrogenase from Escherichia coli (EcSTH) as a novel genetically encoded tool to promote reductive stress in living cells. When expressed in mammalian cells, EcSTH, and a mitochondrially targeted version (mitoEcSTH), robustly elevated the NADH/NAD+ ratio in a compartment-specific manner. Using this tool, we determined that metabolic and transcriptomic signatures of the NADH reductive stress are cellular background specific. Collectively, our novel genetically encoded tool represents an orthogonal strategy to promote reductive stress.

4.
EMBO J ; 39(8): e103334, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32134147

RESUMO

The production and secretion of matrix proteins upon stimulation of fibroblasts by transforming growth factor-beta (TGFß) play a critical role in wound healing. How TGFß supports the bioenergetic cost of matrix protein synthesis is not fully understood. Here, we show that TGFß promotes protein translation at least in part by increasing the mitochondrial oxidation of glucose and glutamine carbons to support the bioenergetic demand of translation. Surprisingly, we found that in addition to stimulating the entry of glucose and glutamine carbon into the TCA cycle, TGFß induced the biosynthesis of proline from glutamine in a Smad4-dependent fashion. Metabolic manipulations that increased mitochondrial redox generation promoted proline biosynthesis, while reducing mitochondrial redox potential and/or ATP synthesis impaired proline biosynthesis. Thus, proline biosynthesis acts as a redox vent, preventing the TGFß-induced increase in mitochondrial glucose and glutamine catabolism from generating damaging reactive oxygen species (ROS) when TCA cycle activity exceeds the ability of oxidative phosphorylation to convert mitochondrial redox potential into ATP. In turn, the enhanced synthesis of proline supports TGFß-induced production of matrix proteins.


Assuntos
Fibrose/metabolismo , Glucose/metabolismo , Glutamina/metabolismo , Mitocôndrias/metabolismo , Prolina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Ciclo do Ácido Cítrico , Colágeno/metabolismo , Metabolismo Energético , Humanos , Camundongos , Células NIH 3T3 , Oxirredução , Fosforilação Oxidativa , Espécies Reativas de Oxigênio/metabolismo
5.
J Inherit Metab Dis ; 46(5): 931-942, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37309295

RESUMO

Toxicity of accumulating substrates is a significant problem in several disorders of valine and isoleucine degradation notably short-chain enoyl-CoA hydratase (ECHS1 or crotonase) deficiency, 3-hydroxyisobutyryl-CoA hydrolase (HIBCH) deficiency, propionic acidemia (PA), and methylmalonic aciduria (MMA). Isobutyryl-CoA dehydrogenase (ACAD8) and short/branched-chain acyl-CoA dehydrogenase (SBCAD, ACADSB) function in the valine and isoleucine degradation pathways, respectively. Deficiencies of these acyl-CoA dehydrogenase (ACAD) enzymes are considered biochemical abnormalities with limited or no clinical consequences. We investigated whether substrate reduction therapy through inhibition of ACAD8 and SBCAD can limit the accumulation of toxic metabolic intermediates in disorders of valine and isoleucine metabolism. Using analysis of acylcarnitine isomers, we show that 2-methylenecyclopropaneacetic acid (MCPA) inhibited SBCAD, isovaleryl-CoA dehydrogenase, short-chain acyl-CoA dehydrogenase and medium-chain acyl-CoA dehydrogenase, but not ACAD8. MCPA treatment of wild-type and PA HEK-293 cells caused a pronounced decrease in C3-carnitine. Furthermore, deletion of ACADSB in HEK-293 cells led to an equally strong decrease in C3-carnitine when compared to wild-type cells. Deletion of ECHS1 in HEK-293 cells caused a defect in lipoylation of the E2 component of the pyruvate dehydrogenase complex, which was not rescued by ACAD8 deletion. MCPA was able to rescue lipoylation in ECHS1 KO cells, but only in cells with prior ACAD8 deletion. SBCAD was not the sole ACAD responsible for this compensation, which indicates substantial promiscuity of ACADs in HEK-293 cells for the isobutyryl-CoA substrate. Substrate promiscuity appeared less prominent for 2-methylbutyryl-CoA at least in HEK-293 cells. We suggest that pharmacological inhibition of SBCAD to treat PA should be investigated further.


Assuntos
Ácido 2-Metil-4-clorofenoxiacético , Acidemia Propiônica , Humanos , Valina/genética , Valina/metabolismo , Acil-CoA Desidrogenase/metabolismo , Isoleucina/metabolismo , Células HEK293 , Carnitina
6.
Cell Mol Life Sci ; 78(14): 5631-5646, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34110423

RESUMO

Peroxisomes play an essential role in the ß-oxidation of dicarboxylic acids (DCAs), which are metabolites formed upon ω-oxidation of fatty acids. Genetic evidence linking transporters and enzymes to specific DCA ß-oxidation steps is generally lacking. Moreover, the physiological functions of DCA metabolism remain largely unknown. In this study, we aimed to characterize the DCA ß-oxidation pathway in human cells, and to evaluate the biological role of DCA metabolism using mice deficient in the peroxisomal L-bifunctional protein (Ehhadh KO mice). In vitro experiments using HEK-293 KO cell lines demonstrate that ABCD3 and ACOX1 are essential in DCA ß-oxidation, whereas both the bifunctional proteins (EHHADH and HSD17B4) and the thiolases (ACAA1 and SCPx) have overlapping functions and their contribution may depend on expression level. We also show that medium-chain 3-hydroxydicarboxylic aciduria is a prominent feature of EHHADH deficiency in mice most notably upon inhibition of mitochondrial fatty acid oxidation. Using stable isotope tracing methodology, we confirmed that products of peroxisomal DCA ß-oxidation can be transported to mitochondria for further metabolism. Finally, we show that, in liver, Ehhadh KO mice have increased mRNA and protein expression of cholesterol biosynthesis enzymes with decreased (in females) or similar (in males) rate of cholesterol synthesis. We conclude that EHHADH plays an essential role in the metabolism of medium-chain DCAs and postulate that peroxisomal DCA ß-oxidation is a regulator of hepatic cholesterol biosynthesis.


Assuntos
Colesterol/metabolismo , Ácidos Dicarboxílicos/urina , Erros Inatos do Metabolismo Lipídico/patologia , Hepatopatias/patologia , Mitocôndrias/patologia , Enzima Bifuncional do Peroxissomo/fisiologia , Animais , Feminino , Células HEK293 , Homeostase , Humanos , Erros Inatos do Metabolismo Lipídico/etiologia , Hepatopatias/etiologia , Hepatopatias/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo
7.
FASEB J ; 33(3): 4355-4364, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30540494

RESUMO

Peroxisomes are essential organelles for the specialized oxidation of a wide variety of fatty acids, but they are also able to degrade fatty acids that are typically handled by mitochondria. Using a combination of pharmacological inhibition and clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR associated protein 9 genome editing technology to simultaneously manipulate peroxisomal and mitochondrial fatty acid ß-oxidation (FAO) in HEK-293 cells, we identified essential players in the metabolic crosstalk between these organelles. Depletion of carnitine palmitoyltransferase (CPT)2 activity through pharmacological inhibition or knockout (KO) uncovered a significant residual peroxisomal oxidation of lauric and palmitic acid, leading to the production of peroxisomal acylcarnitine intermediates. Generation and analysis of additional single- and double-KO cell lines revealed that the D-bifunctional protein (HSD17B4) and the peroxisomal ABC transporter ABCD3 are essential in peroxisomal oxidation of lauric and palmitic acid. Our results indicate that peroxisomes not only accept acyl-CoAs but can also oxidize acylcarnitines in a similar biochemical pathway. By using an Hsd17b4 KO mouse model, we demonstrated that peroxisomes contribute to the plasma acylcarnitine profile after acute inhibition of CPT2, proving in vivo relevance of this pathway. We summarize that peroxisomal FAO is important when mitochondrial FAO is defective or overloaded.-Violante, S., Achetib, N., van Roermund, C. W. T., Hagen, J., Dodatko, T., Vaz, F. M., Waterham, H. R., Chen, H., Baes, M., Yu, C., Argmann, C. A., Houten, S. M. Peroxisomes can oxidize medium- and long-chain fatty acids through a pathway involving ABCD3 and HSD17B4.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Ácidos Graxos/metabolismo , Proteína Multifuncional do Peroxissomo-2/fisiologia , Peroxissomos/enzimologia , Transportadores de Cassetes de Ligação de ATP/deficiência , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Sistemas CRISPR-Cas , Carnitina/análogos & derivados , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/antagonistas & inibidores , Carnitina O-Palmitoiltransferase/deficiência , Carnitina O-Palmitoiltransferase/fisiologia , Células HEK293 , Humanos , Ácidos Láuricos/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Mitocôndrias/enzimologia , Oxirredução , Ácido Palmítico/metabolismo , Enzima Bifuncional do Peroxissomo/deficiência , Proteína Multifuncional do Peroxissomo-2/deficiência , Proteína Multifuncional do Peroxissomo-2/genética , Proteínas Recombinantes/metabolismo
8.
Brain ; 142(3): 542-559, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668673

RESUMO

Biallelic pathogenic variants in PLPBP (formerly called PROSC) have recently been shown to cause a novel form of vitamin B6-dependent epilepsy, the pathophysiological basis of which is poorly understood. When left untreated, the disease can progress to status epilepticus and death in infancy. Here we present 12 previously undescribed patients and six novel pathogenic variants in PLPBP. Suspected clinical diagnoses prior to identification of PLPBP variants included mitochondrial encephalopathy (two patients), folinic acid-responsive epilepsy (one patient) and a movement disorder compatible with AADC deficiency (one patient). The encoded protein, PLPHP is believed to be crucial for B6 homeostasis. We modelled the pathogenicity of the variants and developed a clinical severity scoring system. The most severe phenotypes were associated with variants leading to loss of function of PLPBP or significantly affecting protein stability/PLP-binding. To explore the pathophysiology of this disease further, we developed the first zebrafish model of PLPHP deficiency using CRISPR/Cas9. Our model recapitulates the disease, with plpbp-/- larvae showing behavioural, biochemical, and electrophysiological signs of seizure activity by 10 days post-fertilization and early death by 16 days post-fertilization. Treatment with pyridoxine significantly improved the epileptic phenotype and extended lifespan in plpbp-/- animals. Larvae had disruptions in amino acid metabolism as well as GABA and catecholamine biosynthesis, indicating impairment of PLP-dependent enzymatic activities. Using mass spectrometry, we observed significant B6 vitamer level changes in plpbp-/- zebrafish, patient fibroblasts and PLPHP-deficient HEK293 cells. Additional studies in human cells and yeast provide the first empirical evidence that PLPHP is localized in mitochondria and may play a role in mitochondrial metabolism. These models provide new insights into disease mechanisms and can serve as a platform for drug discovery.


Assuntos
Epilepsia/etiologia , Proteínas/genética , Proteínas/metabolismo , Animais , Modelos Animais de Doenças , Epilepsia/fisiopatologia , Feminino , Células HEK293 , Humanos , Masculino , Fenótipo , Fosfato de Piridoxal/uso terapêutico , Piridoxina/deficiência , Vitamina B 6/metabolismo , Deficiência de Vitamina B 6/genética , Deficiência de Vitamina B 6/metabolismo , Peixe-Zebra
9.
Annu Rev Physiol ; 78: 23-44, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26474213

RESUMO

Mitochondrial fatty acid ß-oxidation (FAO) is the major pathway for the degradation of fatty acids and is essential for maintaining energy homeostasis in the human body. Fatty acids are a crucial energy source in the postabsorptive and fasted states when glucose supply is limiting. But even when glucose is abundantly available, FAO is a main energy source for the heart, skeletal muscle, and kidney. A series of enzymes, transporters, and other facilitating proteins are involved in FAO. Recessively inherited defects are known for most of the genes encoding these proteins. The clinical presentation of these disorders may include hypoketotic hypoglycemia, (cardio)myopathy, arrhythmia, and rhabdomyolysis and illustrates the importance of FAO during fasting and in hepatic and (cardio)muscular function. In this review, we present the current state of knowledge on the biochemistry and physiological functions of FAO and discuss the pathophysiological processes associated with FAO disorders.


Assuntos
Ácidos Graxos/metabolismo , Mitocôndrias/genética , Mitocôndrias/fisiologia , Animais , Glucose/metabolismo , Homeostase/genética , Homeostase/fisiologia , Humanos , Mitocôndrias/metabolismo , Oxirredução
10.
Mol Genet Metab ; 126(4): 388-396, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30709776

RESUMO

Inbred mouse strains are a cornerstone of translational research but paradoxically many strains carry mild inborn errors of metabolism. For example, α-aminoadipic acidemia and branched-chain ketoacid dehydrogenase deficiency are known in C57BL/6J mice. Using RNA sequencing, we now reveal the causal variants in Dhtkd1 and Bckdhb, and the molecular mechanism underlying these metabolic defects. C57BL/6J mice have decreased Dhtkd1 mRNA expression due to a solitary long terminal repeat (LTR) in intron 4 of Dhtkd1. This LTR harbors an alternate splice donor site leading to a partial splicing defect and as a consequence decreased total and functional Dhtkd1 mRNA, decreased DHTKD1 protein and α-aminoadipic acidemia. Similarly, C57BL/6J mice have decreased Bckdhb mRNA expression due to an LTR retrotransposon in intron 1 of Bckdhb. This transposable element encodes an alternative exon 1 causing aberrant splicing, decreased total and functional Bckdhb mRNA and decreased BCKDHB protein. Using a targeted metabolomics screen, we also reveal elevated plasma C5-carnitine in 129 substrains. This biochemical phenotype resembles isovaleric acidemia and is caused by an exonic splice mutation in Ivd leading to partial skipping of exon 10 and IVD protein deficiency. In summary, this study identifies three causal variants underlying mild inborn errors of metabolism in commonly used inbred mouse strains.


Assuntos
Erros Inatos do Metabolismo/genética , Camundongos Endogâmicos/genética , Animais , Elementos de DNA Transponíveis/genética , Cetona Oxirredutases/genética , Masculino , Erros Inatos do Metabolismo/diagnóstico , Metabolômica , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Fenótipo , Análise de Sequência de RNA
11.
Biochim Biophys Acta Mol Basis Dis ; 1863(12): 3277-3285, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28962896

RESUMO

OBJECTIVE: The transcription factor Krüppel-like factor 14 (KLF14) has been associated with type 2 diabetes and high-density lipoprotein-cholesterol (HDL-C) through genome-wide association studies. The mechanistic underpinnings of KLF14's control of metabolic processes remain largely unknown. We studied the physiological roles of KLF14 in a knockout (KO) mouse model. METHODS: Male whole body Klf14 KO mice were fed a chow or high fat diet (HFD) and diet induced phenotypes were analyzed. Additionally, tissue-specific expression of Klf14 was determined using RT-PCR, RNA sequencing, immunoblotting and whole mount lacZ staining. Finally, the consequences of KLF14 loss-of-function were studied using RNA sequencing in tissues with relatively high Klf14 expression levels. RESULTS: KLF14 loss-of-function did not affect HFD-induced weight gain or insulin resistance. Fasting plasma concentrations of glucose, insulin, cholesterol, HDL-C and ApoA-I were also comparable between Klf14+/+ and Klf14-/- mice on chow and HFD. We found that in mice expression of Klf14 was the highest in the anterior pituitary (adenohypophysis), lower but detectable in white adipose tissue and undetectable in liver. Loss of KLF14 function impacted on the pituitary transcriptome with extracellular matrix organization as the primary affected pathway and a predicted link to glucocorticoid receptor signaling. CONCLUSIONS: Whole body loss of KLF14 function in male mice does not result in metabolic abnormalities as assessed under chow and HFD conditions. Mostly likely there is redundancy for the role of KLF14 in the mouse and a diverging function in humans.


Assuntos
Fatores de Transcrição Kruppel-Like/deficiência , Síndrome Metabólica/metabolismo , Animais , Apolipoproteína A-I/metabolismo , Colesterol/metabolismo , HDL-Colesterol/metabolismo , Dieta Hiperlipídica , Perfilação da Expressão Gênica , Estudo de Associação Genômica Ampla , Glucose/metabolismo , Humanos , Insulina/metabolismo , Resistência à Insulina , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Masculino , Síndrome Metabólica/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Glucocorticoides/metabolismo , Análise de Sequência de RNA
12.
Clin Chem ; 63(4): 842-851, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28196920

RESUMO

BACKGROUND: Pompe disease (PD) is the first lysosomal storage disorder to be added to the Recommended Uniform Screening Panel for newborn screening. This condition has a broad phenotypic spectrum, ranging from an infantile form (IOPD), with severe morbidity and mortality in infancy, to a late-onset form (LOPD) with variable onset and progressive weakness and respiratory failure. Because the prognosis and treatment options are different for IOPD and LOPD, it is important to accurately determine an individual's phenotype. To date, no enzyme assay of acid α-glucosidase (GAA) has been described that can differentiate IOPD vs LOPD using blood samples. METHODS: We incubated 10 µL leukocyte lysate and 25 µL GAA substrate and internal standard (IS) assay cocktail for 1 h. The reaction was purified by a liquid-liquid extraction. The extracts were evaporated and reconstituted in 200 µL methanol and analyzed by LC-MS/MS for GAA activity. RESULTS: A 700-fold higher analytical range was observed with the LC-MS/MS assay compared to the fluorometric method. When GAA-null and GAA-containing fibroblast lysates were mixed, GAA activity could be measured accurately even in the range of 0%-1% of normal. The leukocyte GAA activity in IOPD (n = 4) and LOPD (n = 19) was 0.44-1.75 nmol · h-1 · mg-1 and 2.0-6.5 nmol · h-1 · mg-1, respectively, with no overlap. The GAA activity of pseudodeficiency patients ranged from 3.0-28.1 nmol · h-1 · mg-1, showing substantial but incomplete separation from the LOPD group. CONCLUSIONS: This assay allows determination of low residual GAA activity in leukocytes. IOPD, LOPD, and pseudodeficiency patients can be partially differentiated by measuring GAA using blood samples.


Assuntos
Cromatografia Líquida , Doença de Depósito de Glicogênio Tipo II/sangue , Leucócitos/enzimologia , Triagem Neonatal , Espectrometria de Massas em Tandem , alfa-Glucosidases/sangue , Adulto , Alelos , Criança , Pré-Escolar , Doença de Depósito de Glicogênio Tipo II/diagnóstico , Doença de Depósito de Glicogênio Tipo II/enzimologia , Humanos , Lactente , Recém-Nascido , Leucócitos/metabolismo , alfa-Glucosidases/genética , alfa-Glucosidases/metabolismo
13.
Proc Natl Acad Sci U S A ; 109(21): 7974-81, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566635

RESUMO

We recently reported a deletion of exon 2 of the trimethyllysine hydroxylase epsilon (TMLHE) gene in a proband with autism. TMLHE maps to the X chromosome and encodes the first enzyme in carnitine biosynthesis, 6-N-trimethyllysine dioxygenase. Deletion of exon 2 of TMLHE causes enzyme deficiency, resulting in increased substrate concentration (6-N-trimethyllysine) and decreased product levels (3-hydroxy-6-N-trimethyllysine and γ-butyrobetaine) in plasma and urine. TMLHE deficiency is common in control males (24 in 8,787 or 1 in 366) and was not significantly increased in frequency in probands from simplex autism families (9 in 2,904 or 1 in 323). However, it was 2.82-fold more frequent in probands from male-male multiplex autism families compared with controls (7 in 909 or 1 in 130; P = 0.023). Additionally, six of seven autistic male siblings of probands in male-male multiplex families had the deletion, suggesting that TMLHE deficiency is a risk factor for autism (metaanalysis Z-score = 2.90 and P = 0.0037), although with low penetrance (2-4%). These data suggest that dysregulation of carnitine metabolism may be important in nondysmorphic autism; that abnormalities of carnitine intake, loss, transport, or synthesis may be important in a larger fraction of nondysmorphic autism cases; and that the carnitine pathway may provide a novel target for therapy or prevention of autism.


Assuntos
Transtorno Autístico , Carnitina/deficiência , Cromossomos Humanos X/genética , Genes Ligados ao Cromossomo X/genética , Erros Inatos do Metabolismo , Oxigenases de Função Mista/genética , Transtorno Autístico/epidemiologia , Transtorno Autístico/genética , Transtorno Autístico/metabolismo , Carnitina/biossíntese , Cognição/fisiologia , Éxons/genética , Deleção de Genes , Humanos , Masculino , Erros Inatos do Metabolismo/epidemiologia , Erros Inatos do Metabolismo/genética , Erros Inatos do Metabolismo/metabolismo , Oxigenases de Função Mista/sangue , Oxigenases de Função Mista/urina , Penetrância , Fatores de Risco , Irmãos
14.
Biochim Biophys Acta ; 1831(9): 1467-74, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23850792

RESUMO

Fatty acid ß-oxidation may occur in both mitochondria and peroxisomes. While peroxisomes oxidize specific carboxylic acids such as very long-chain fatty acids, branched-chain fatty acids, bile acids, and fatty dicarboxylic acids, mitochondria oxidize long-, medium-, and short-chain fatty acids. Oxidation of long-chain substrates requires the carnitine shuttle for mitochondrial access but medium-chain fatty acid oxidation is generally considered carnitine-independent. Using control and carnitine palmitoyltransferase 2 (CPT2)- and carnitine/acylcarnitine translocase (CACT)-deficient human fibroblasts, we investigated the oxidation of lauric acid (C12:0). Measurement of the acylcarnitine profile in the extracellular medium revealed significantly elevated levels of extracellular C10- and C12-carnitine in CPT2- and CACT-deficient fibroblasts. The accumulation of C12-carnitine indicates that lauric acid also uses the carnitine shuttle to access mitochondria. Moreover, the accumulation of extracellular C10-carnitine in CPT2- and CACT-deficient cells suggests an extramitochondrial pathway for the oxidation of lauric acid. Indeed, in the absence of peroxisomes C10-carnitine is not produced, proving that this intermediate is a product of peroxisomal ß-oxidation. In conclusion, when the carnitine shuttle is impaired lauric acid is partly oxidized in peroxisomes. This peroxisomal oxidation could be a compensatory mechanism to metabolize straight medium- and long-chain fatty acids, especially in cases of mitochondrial fatty acid ß-oxidation deficiency or overload.


Assuntos
Carnitina Aciltransferases/fisiologia , Carnitina O-Palmitoiltransferase/fisiologia , Carnitina/análogos & derivados , Carnitina/metabolismo , Fibroblastos/metabolismo , Erros Inatos do Metabolismo Lipídico/metabolismo , Peroxissomos/metabolismo , Pele/metabolismo , Carnitina Aciltransferases/deficiência , Carnitina Aciltransferases/metabolismo , Células Cultivadas , Fibroblastos/citologia , Imunofluorescência , Humanos , Ácidos Láuricos/química , Erros Inatos do Metabolismo Lipídico/patologia , Oxirredução , Pele/citologia
15.
Biochim Biophys Acta ; 1832(6): 773-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23485643

RESUMO

Carnitine acyltransferases catalyze the reversible conversion of acyl-CoAs into acylcarnitine esters. This family includes the mitochondrial enzymes carnitine palmitoyltransferase 2 (CPT2) and carnitine acetyltransferase (CrAT). CPT2 is part of the carnitine shuttle that is necessary to import fatty acids into mitochondria and catalyzes the conversion of acylcarnitines into acyl-CoAs. In addition, when mitochondrial fatty acid ß-oxidation is impaired, CPT2 is able to catalyze the reverse reaction and converts accumulating long- and medium-chain acyl-CoAs into acylcarnitines for export from the matrix to the cytosol. However, CPT2 is inactive with short-chain acyl-CoAs and intermediates of the branched-chain amino acid oxidation pathway (BCAAO). In order to explore the origin of short-chain and branched-chain acylcarnitines that may accumulate in various organic acidemias, we performed substrate specificity studies using purified recombinant human CrAT. Various saturated, unsaturated and branched-chain acyl-CoA esters were tested and the synthesized acylcarnitines were quantified by ESI-MS/MS. We show that CrAT converts short- and medium-chain acyl-CoAs (C2 to C10-CoA), whereas no activity was observed with long-chain species. Trans-2-enoyl-CoA intermediates were found to be poor substrates for this enzyme. Furthermore, CrAT turned out to be active towards some but not all the BCAAO intermediates tested and no activity was found with dicarboxylic acyl-CoA esters. This suggests the existence of another enzyme able to handle the acyl-CoAs that are not substrates for CrAT and CPT2, but for which the corresponding acylcarnitines are well recognized as diagnostic markers in inborn errors of metabolism.


Assuntos
Aminoácidos de Cadeia Ramificada/química , Aminoácidos de Cadeia Ramificada/metabolismo , Carnitina O-Acetiltransferase/química , Carnitina O-Acetiltransferase/metabolismo , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Acil Coenzima A/química , Acil Coenzima A/genética , Acil Coenzima A/metabolismo , Aminoácidos de Cadeia Ramificada/genética , Carnitina O-Acetiltransferase/genética , Carnitina O-Palmitoiltransferase/química , Carnitina O-Palmitoiltransferase/genética , Carnitina O-Palmitoiltransferase/metabolismo , Ácidos Graxos/genética , Humanos , Especificidade por Substrato/fisiologia
16.
FASEB J ; 27(5): 2039-44, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23322164

RESUMO

Acylcarnitines are commonly used in the diagnosis of mitochondrial fatty acid ß-oxidation disorders (mFAODs). It is generally assumed that this plasma acylcarnitine profile reflects the mitochondrial accumulation of acyl-CoAs. The identity of the enzymes and the mitochondrial and plasmalemmal transporters involved in the synthesis and export of these metabolites have remained undefined. We used lentiviral shRNA to knock down the expression of medium-chain acyl-CoA dehydrogenase (MCAD) in control and carnitine palmitoyltransferase 2 (CPT2)-, carnitine/acylcarnitine translocase (CACT)-, and plasmalemmal carnitine transporter (OCTN2)-deficient human fibroblasts. These cell lines, including mock-transduced controls, were loaded with decanoic acid and carnitine, followed by the measurement of the acylcarnitine profile in the extracellular medium. In control fibroblasts, MCAD knockdown markedly increased the production of octanoylcarnitine (3-fold, P<0.01). OCTN2-deficient cell lines also showed extracellular accumulation of octanoylcarnitine (2.8-fold, P<0.01), suggesting that the cellular export of acylcarnitines does not depend on OCTN2. In contrast, in CPT2- and CACT-deficient cells, the accumulation of octanoylcarnitine in the medium did not significantly increase in the MCAD knockdown. Similar results were obtained using pharmacological inhibition of CPT2 in fibroblasts from MCAD-deficient individuals. This shows that CPT2 and CACT are crucial for mitochondrial acylcarnitine formation and export to the extracellular fluids in mFAOD.


Assuntos
Carnitina Aciltransferases/metabolismo , Carnitina O-Palmitoiltransferase/metabolismo , Carnitina/análogos & derivados , Doenças Mitocondriais/metabolismo , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Acil-CoA Desidrogenase/genética , Acil-CoA Desidrogenase/metabolismo , Carnitina/metabolismo , Carnitina Aciltransferases/deficiência , Carnitina O-Palmitoiltransferase/deficiência , Técnicas de Silenciamento de Genes , Humanos , Proteínas de Membrana Transportadoras/metabolismo , Mitocôndrias/metabolismo , Membro 5 da Família 22 de Carreadores de Soluto
17.
ACS Chem Biol ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38915184

RESUMO

Glutaric Aciduria Type 1 (GA1) is a serious inborn error of metabolism with no pharmacological treatments. A novel strategy to treat this disease is to divert the toxic biochemical intermediates to less toxic or nontoxic metabolites. Here, we report a putative novel target, succinyl-CoA:glutarate-CoA transferase (SUGCT), which we hypothesize suppresses the GA1 metabolic phenotype through decreasing glutaryl-CoA and the derived 3-hydroxyglutaric acid. SUGCT is a type III CoA transferase that uses succinyl-CoA and glutaric acid as substrates. We report the structure of SUGCT, develop enzyme- and cell-based assays, and identify valsartan and losartan carboxylic acid as inhibitors of the enzyme in a high-throughput screen of FDA-approved compounds. The cocrystal structure of SUGCT with losartan carboxylic acid revealed a novel pocket in the active site and further validated the high-throughput screening approach. These results may form the basis for the future development of new pharmacological intervention to treat GA1.

18.
bioRxiv ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38370847

RESUMO

Glutaric Aciduria Type 1 (GA1) is a serious inborn error of metabolism with no pharmacological treatments. A novel strategy to treat this disease is to divert the toxic biochemical intermediates to less toxic or non-toxic metabolites. Here, we report a novel target, SUGCT, which we hypothesize suppresses the GA1 metabolic phenotype through decreasing glutaryl-CoA. We report the structure of SUGCT, the first eukaryotic structure of a type III CoA transferase, develop a high-throughput enzyme assay and a cell-based assay, and identify valsartan and losartan carboxylic acid as inhibitors of the enzyme validating the screening approach. These results may form the basis for future development of new pharmacological intervention to treat GA1.

19.
Front Cell Dev Biol ; 11: 1160154, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440924

RESUMO

Mammalian sperm require sufficient energy to support motility and capacitation for successful fertilization. Previous studies cataloging the changes to metabolism in sperm explored ejaculated human sperm or dormant mouse sperm surgically extracted from the cauda epididymis. Due to the differences in methods of collection, it remains unclear whether any observed differences between mouse and human sperm represent species differences or reflect the distinct maturation states of the sperm under study. Here we compare the metabolic changes during capacitation of epididymal versus ejaculated mouse sperm and relate these changes to ejaculated human sperm. Using extracellular flux analysis and targeted metabolic profiling, we show that capacitation-induced changes lead to increased flux through both glycolysis and oxidative phosphorylation in mouse and human sperm. Ejaculation leads to greater flexibility in the ability to use different carbon sources. While epididymal sperm are dependent upon glucose, ejaculated mouse and human sperm gain the ability to also leverage non-glycolytic energy sources such as pyruvate and citrate.

20.
Front Cell Dev Biol ; 11: 1234221, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655160

RESUMO

Mammalian sperm must undergo capacitation to become fertilization-competent. While working on mice, we recently developed a new methodology for treating sperm in vitro, which results in higher rates of fertilization and embryo development after in vitro fertilization. Sperm incubated in media devoid of nutrients lose motility, although they remain viable. Upon re-adding energy substrates, sperm resume motility and become capacitated with improved functionality. Here, we explore how sperm energy restriction and recovery (SER) treatment affects sperm metabolism and capacitation-associated signaling. Using extracellular flux analysis and metabolite profiling and tracing via nuclear magnetic resonance (NMR) and mass spectrometry (MS), we found that the levels of many metabolites were altered during the starvation phase of SER. Of particular interest, two metabolites, AMP and L-carnitine, were significantly increased in energy-restricted sperm. Upon re-addition of glucose and initiation of capacitation, most metabolite levels recovered and closely mimic the levels observed in capacitating sperm that have not undergone starvation. In both control and SER-treated sperm, incubation under capacitating conditions upregulated glycolysis and oxidative phosphorylation. However, ATP levels were diminished, presumably reflecting the increased energy consumption during capacitation. Flux data following the fate of 13C glucose indicate that, similar to other cells with high glucose consumption rates, pyruvate is converted into 13C-lactate and, with lower efficiency, into 13C-acetate, which are then released into the incubation media. Furthermore, our metabolic flux data show that exogenously supplied glucose is converted into citrate, providing evidence that in sperm cells, as in somatic cells, glycolytic products can be converted into Krebs cycle metabolites.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa