Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 36(1): e22107, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34939700

RESUMO

Mounting evidence has linked the metabolic disease to neurovascular disorders and cognitive decline. Using a murine model of a high-fat high-sugar diet mimicking obesity-induced type 2 diabetes mellitus (T2DM) in humans, we show that pro-inflammatory mediators and altered immune responses damage the blood-brain barrier (BBB) structure, triggering a proinflammatory metabolic phenotype. We find that disruption to tight junctions and basal lamina due to loss of control in the production of matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) causes BBB impairment. Together the disruption to the structural and functional integrity of the BBB results in enhanced transmigration of leukocytes across the BBB that could contribute to an initiation of a neuroinflammatory response through activation of microglia. Using a humanized in vitro model of the BBB and T2DM patient post-mortem brains, we show the translatable applicability of our results. We find a leaky BBB phenotype in T2DM patients can be attributed to a loss of junctional proteins through changes in inflammatory mediators and MMP/TIMP levels, resulting in increased leukocyte extravasation into the brain parenchyma. We further investigated therapeutic avenues to reduce and restore the BBB damage caused by HFHS-feeding. Pharmacological treatment with recombinant annexin A1 (hrANXA1) or reversion from a high-fat high-sugar diet to a control chow diet (dietary intervention), attenuated T2DM development, reduced inflammation, and restored BBB integrity in the animals. Given the rising incidence of diabetes worldwide, understanding metabolic-disease-associated brain microvessel damage is vital and the proposed therapeutic avenues could help alleviate the burden of these diseases.


Assuntos
Barreira Hematoencefálica/imunologia , Colagenases/imunologia , Diabetes Mellitus Experimental/imunologia , Diabetes Mellitus Tipo 2/imunologia , Inibidores Teciduais de Metaloproteinases/imunologia , Animais , Anexina A1/farmacologia , Barreira Hematoencefálica/patologia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/patologia , Humanos , Masculino , Camundongos , Proteínas Recombinantes/farmacologia
2.
Int J Mol Sci ; 24(7)2023 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-37047713

RESUMO

Microvasculature develops during early brain development. Hypoxia-ischemia (HI) and hypoxia (H) predispose to brain injury in neonates. Inter-alpha inhibitor proteins (IAIPs) attenuate injury to the neonatal brain after exposure to HI. However, the effects of IAIPs on the brain microvasculature after exposure to HI have not been examined in neonates. Postnatal day-7 rats were exposed to sham treatment or right carotid artery ligation and 8% oxygen for 90 min. HI comprises hypoxia (H) and ischemia to the right hemisphere (HI-right) and hypoxia to the whole body, including the left hemisphere (H-left). Human IAIPs (hIAIPs, 30 mg/kg) or placebo were injected immediately, 24 and 48 h after HI/H. The brains were analyzed 72 h after HI/H to determine the effects of hIAIPs on the microvasculature by laminin immunohistochemistry and calculation of (1) the percentage area stained by laminin, (2) cumulative microvessel length, and (3) density of tunneling nanotubes (TNTs), which are sensitive indicators of the earliest phases of neo-vascularization/collateralization. hIAIPs mainly affected the percent of the laminin-stained area after HI/H, cumulative vessel length after H but not HI, and TNT density in females but not males. hIAIPs modify the effects of HI/H on the microvasculature after brain injury in neonatal rats and exhibit sex-related differential effects. Our findings suggest that treatment with hIAIPs after exposure to H and HI in neonatal rats affects the laminin content of the vessel basal lamina and angiogenic responses in a sex-related fashion.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Feminino , Ratos , Animais , Humanos , Animais Recém-Nascidos , Hipóxia-Isquemia Encefálica/metabolismo , Laminina/metabolismo , Hipóxia/metabolismo , Encéfalo/metabolismo , Isquemia , Microvasos/metabolismo
3.
J Lipid Res ; 63(1): 100147, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34752805

RESUMO

The myelin sheath, which is wrapped around axons, is a lipid-enriched structure produced by mature oligodendrocytes. Disruption of the myelin sheath is observed in several neurological diseases, such as multiple sclerosis. A crucial component of myelin is sphingomyelin, levels of which can be increased by ABCA8, a member of the ATP-binding cassette transporter family. ABCA8 is highly expressed in the cerebellum, specifically in oligodendroglia. However, whether ABCA8 plays a role in myelination and mechanisms that would underlie this role remain unknown. Here, we found that the absence of Abca8b, a mouse ortholog of ABCA8, led to decreased numbers of cerebellar oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes in mice. We show that in oligodendrocytes, ABCA8 interacts with chondroitin sulfate proteoglycan 4 (CSPG4), a molecule essential for OPC proliferation, migration, and myelination. In the absence of Abca8b, localization of CSPG4 to the plasma membrane was decreased, contributing to reduced cerebellar CSPG4 expression. Cerebellar CSPG4+ OPCs were also diminished, leading to decreased mature myelinating oligodendrocyte numbers and cerebellar myelination levels in Abca8b-/- mice. In addition, electron microscopy analyses showed that the number of nonmyelinated cerebellar axons was increased, whereas cerebellar myelin thickness (g-ratio), myelin sheath periodicity, and axonal diameter were all decreased, indicative of disordered myelin ultrastructure. In line with disrupted cerebellar myelination, Abca8b-/- mice showed lower cerebellar conduction velocity and disturbed locomotion. In summary, ABCA8 modulates cerebellar myelination, in part through functional regulation of the ABCA8-interacting protein CSPG4. Our findings suggest that ABCA8 disruption may contribute to the pathophysiology of myelin disorders.


Assuntos
Células Precursoras de Oligodendrócitos
4.
Rheumatology (Oxford) ; 61(8): 3448-3460, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34864921

RESUMO

OBJECTIVES: To study the phenotype of macrophage infiltrates and their role in angiogenesis in different idiopathic inflammatory myopathies (IIMs). METHODS: The density and distribution of the subpopulations of macrophages subsets (M1, inducible nitric oxide+, CD11c+; M2, arginase-1+), endomysial capillaries (CD31+, FLK1+), degenerating (C5b-9+) and regenerating (NCAM+) myofibres were investigated by immunohistochemistry in human muscle samples of diagnostic biopsies from a large cohort of untreated patients (n: 81) suffering from anti-3-hydroxy-3-methylglutaryl coenzyme A reductase (anti-HMGCR)+ immune mediated necrotizing myopathy (IMNM), anti-signal recognition particle (anti-SRP)+ IMNM, seronegative IMNM, DM, PM, PM with mitochondrial pathology, sporadic IBM, scleromyositis, and anti-synthetase syndrome. The samples were compared with mitochondrial myopathy and control muscle samples. RESULTS: Compared with the other IIMs and controls, endomysial capillary density (CD) was higher in anti-HMGCR+ IMNM, where M1 and M2 macrophages, detected by confocal microscopy, infiltrated perivascular endomysium and expressed angiogenic molecules such as VEGF-A and CXCL12. These angiogenic macrophages were preferentially associated with CD31+ FLK1+ microvessels in anti-HMGCR+ IMNM. The VEGF-A+ M2 macrophage density was significantly correlated with CD (rS: 0.98; P: 0.0004). Western blot analyses revealed increased expression levels of VEGF-A, FLK1, HIF-1α and CXCL12 in anti-HMGCR+ IMNM. CD and expression levels of these angiogenic molecules were not increased in anti-SRP+ and seronegative IMNM, offering additional, useful information for differential diagnosis among these IIM subtypes. CONCLUSION: Our findings suggest that in IIMs, infiltrating macrophages and microvascular cells interactions play a pivotal role in coordinating myogenesis and angiogenesis. This reciprocal crosstalk seems to distinguish anti-HMGCR associated IMNM.


Assuntos
Doenças Autoimunes , Miosite , Anticorpos , Autoanticorpos , Quimiocina CXCL12 , Humanos , Hidroximetilglutaril-CoA Redutases , Macrófagos/patologia , Músculo Esquelético/patologia , Necrose , Partícula de Reconhecimento de Sinal , Fator A de Crescimento do Endotélio Vascular
5.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-35456999

RESUMO

Exposure to hypoxic-ischemic (HI) insults in newborns can predispose them to severe neurological sequela. The mechanisms underlying HI-related brain injury have not been completely elucidated. The neurovascular unit (NVU) is a composite of structures that protect the brain from the influx of detrimental molecules. Changes in the NVU after HI are important because they could reveal endogenous neuroprotective pathways in the cerebral microvasculature. Furthermore, the time course of changes in the NVU after exposure to HI in the newborn remains to be determined. In this study, we examined the effects of severe HI on the time course of changes in the NVU in neonatal rats. Brains were collected from rats exposed to right carotid artery ligation and 2 h of hypoxia on postnatal day 7 with recovery for 6 or 48 h after exposure to sham treatment (Sham) or HI. The right HI and left hypoxic alone sides of the brains were examined by quantitative immunohistochemistry for vascular density (laminin), pericyte vascular coverage (PDGFRß), astrocyte vascular coverage (GFAP), and claudin-5 expression in the microvasculature of the cerebral cortex, white matter, and hippocampus. HI-related brain injury in neonatal rats was associated with increases in vascular density in the cortex and hippocampus 48 h after HI as well as neurovascular remodeling, including loss of pericyte coverage in the cortex and increases in claudin-5 in the hippocampus 6 h after HI. Astrocyte coverage was not affected by HI injury. The time course of the responses in the different components of the NVU varied after exposure to HI. There were also differential regional responses in the elements of the NVU in response to HI and hypoxia alone.


Assuntos
Lesões Encefálicas , Hipóxia-Isquemia Encefálica , Animais , Animais Recém-Nascidos , Encéfalo/metabolismo , Lesões Encefálicas/metabolismo , Claudina-5/metabolismo , Hipóxia/metabolismo , Hipóxia-Isquemia Encefálica/metabolismo , Isquemia/metabolismo , Ratos
6.
Glia ; 69(5): 1204-1215, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33381863

RESUMO

Transplanted mesenchymal stromal/stem cells (MSC) ameliorate the clinical course of experimental autoimmune encephalomyelitis (EAE), a mouse model of multiple sclerosis (MS), reducing inflammation and demyelination. These effects are mediated by instructive cross-talk between MSC and immune and neural cells. Astroglial reaction to injury is a prominent feature of both EAE and MS. Astrocytes constitute a relevant target to control disease onset and progression and, based on their potential to acquire stem cell properties in situ, to foster recovery in the post-acute phase of pathology. We have assessed how MSC impact astrocytes in vitro and ex vivo in EAE. Expression of astroglial factors implicated in EAE pathogenesis was quantified by real-time PCR in astrocytes co-cultured with MSC or isolated from EAE cerebral cortex; astrocyte morphology and expression of activation markers were analyzed by confocal microscopy. The acquisition of neural stem cell properties by astrocytes was evaluated by neurosphere assay. Our study shows that MSC prevented astrogliosis, reduced mRNA expression of inflammatory cytokines that sustain immune cell infiltration in EAE, as well as protein expression of endothelin-1, an astrocyte-derived factor that inhibits remyelination and contributes to neurodegeneration and disease progression in MS. Moreover, our data reveal that MSC promoted the acquisition of progenitor traits by astrocytes. These data indicate that MSC attenuate detrimental features of reactive astroglia and, based on the reacquisition of stem cell properties, also suggest that astrocytes may be empowered in their protective and reparative actions by MSC.


Assuntos
Encefalomielite Autoimune Experimental , Células-Tronco Mesenquimais , Esclerose Múltipla , Animais , Astrócitos , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
7.
Neurobiol Dis ; 139: 104821, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32088380

RESUMO

BACKGROUND AND AIM: Patients with Parkinson's disease (PD) are often characterized by functional gastrointestinal disorders. Such disturbances can occur at all stages of PD and precede the typical motor symptoms of the disease by many years. However, the morphological alterations associated with intestinal disturbances in PD are undetermined. This study examined the remodelling of colonic wall in 6-hydroxydopamine (6-OHDA)-induced PD rats. METHODS: 8 weeks after 6-OHDA injection animals were sacrificed. Inflammatory infiltrates, collagen deposition and remodelling of intestinal epithelial barrier and tunica muscularis in the colonic wall were assessed by histochemistry, immunohistochemistry, immunofluorescence and western blot analysis. RESULTS: 6-OHDA rats displayed significant alterations of colonic tissues as compared with controls. Signs of mild inflammation (eosinophil infiltration) and a transmural deposition of collagen fibres were observed. Superficial colonic layers were characterized by severe morphological alterations. In particular, lining epithelial cells displayed a reduced claudin-1 and transmembrane 16A/Anoctamin 1 (TMEM16A/ANO1) expression; goblet cells increased their mucin expression; colonic crypts were characterized by an increase in proliferating epithelial cells; the density of S100-positive glial cells and vimentin-positive fibroblast-like cells was increased as well. Several changes were found in the tunica muscularis: downregulation of α-smooth muscle actin/desmin expression and increased proliferation of smooth muscle cells; increased vimentin expression and proliferative phenotype in myenteric ganglia; reduction of interstitial cells of Cajal (ICCs) density. CONCLUSIONS: A pathological remodelling occurs in the colon of 6-OHDA rats. The main changes include: enhanced fibrotic deposition; alterations of the epithelial barrier; activation of mucosal defense; reduction of ICCs. These results indicate that central nigrostriatal denervation is associated with histological changes in the large bowel at mucosal, submucosal and muscular level. These alterations might represent morphological correlates of digestive symptoms in PD.


Assuntos
Colo/patologia , Neurônios Dopaminérgicos/patologia , Animais , Anoctamina-1 , Colo/metabolismo , Dopamina/metabolismo , Fibrose , Gastroenteropatias/metabolismo , Motilidade Gastrointestinal , Masculino , Oxidopamina , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Ratos , Ratos Sprague-Dawley , Substância Negra
8.
Muscle Nerve ; 60(3): 315-327, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31172530

RESUMO

INTRODUCTION: The molecular mechanism of immune-mediated necrotizing myopathy (IMNM) remains unknown. Autophagy impairment, described in autoimmune diseases, is a key process in myofiber protein degradation flux and muscle integrity and has not been studied in IMNM. METHODS: Muscle biopsies from patients with IMNM (n = 40), dermatomyositis (DM; 24), polymyositis (PM; 8), polymyositis with mitochondrial pathology (4), sporadic inclusion body myositis (8), and controls (6) were compared by immunohistochemistry. RESULTS: The proportions of myofibers containing autophagy markers LC3b and p62 were higher in IMNM than in DM or PM and correlated with creatine kinase levels. In IMNM, compartmentalized LC3b puncta were located in regenerating and degenerating myofibers surrounded by major histocompatibility complex type II+ inflammatory cells. Several IMNM myofibers accumulated ubiquitin and misfolded protein. DISCUSSION: The detection of LC3b+ or p62+ myofibers could be used in differentiating IMNM from PM. The identification of autophagy-modifying molecules potentially could improve patients' outcomes. Muscle Nerve, 2019.


Assuntos
Autofagia/imunologia , Músculo Esquelético/patologia , Miosite/imunologia , Miosite/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Biópsia , Dermatomiosite/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Miosite de Corpos de Inclusão/patologia , Polimiosite/imunologia , Polimiosite/patologia
9.
Mol Genet Metab ; 125(4): 322-331, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30145178

RESUMO

Mucopolysaccharidosis (MPS) disorders are caused by deficiencies in lysosomal enzymes, leading to impaired glycosaminoglycan (GAG) degradation. The resulting GAG accumulation in cells and connective tissues ultimately results in widespread tissue and organ dysfunction. The seven MPS types currently described are heterogeneous and progressive disorders, with somatic and neurological manifestations depending on the type of accumulating GAG. Heparan sulfate (HS) is one of the GAGs stored in patients with MPS I, II, and VII and the main GAG stored in patients with MPS III. These disorders are associated with significant central nervous system (CNS) abnormalities that can manifest as impaired cognition, hyperactive and/or aggressive behavior, epilepsy, hydrocephalus, and sleeping problems. This review discusses the anatomical and pathophysiological CNS changes accompanying HS accumulation as well as the mechanisms believed to cause CNS abnormalities in MPS patients. The content of this review is based on presentations and discussions on these topics during a meeting on the brain in MPS attended by an international group of MPS experts.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiopatologia , Disfunção Cognitiva/etiologia , Epilepsia/etiologia , Heparitina Sulfato/metabolismo , Mucopolissacaridoses/complicações , Disfunção Cognitiva/patologia , Epilepsia/patologia , Humanos
10.
Acta Neuropathol ; 132(1): 23-42, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27026411

RESUMO

In adult CNS, nerve/glial-antigen 2 (NG2) is expressed by oligodendrocyte progenitor cells (OPCs) and is an early marker of pericyte activation in pathological conditions. NG2 could, therefore, play a role in experimental autoimmune encephalomyelitis (EAE), a disease associated with increased blood-brain barrier (BBB) permeability, inflammatory infiltrates, and CNS damage. We induced EAE in NG2 knock-out (NG2KO) mice and used laser confocal microscopy immunofluorescence and morphometry to dissect the effect of NG2 KO on CNS pathology. NG2KO mice developed milder EAE than their wild-type (WT) counterparts, with less intense neuropathology associated with a significant improvement in BBB stability. In contrast to WT mice, OPC numbers did not change in NG2KO mice during EAE. Through FACS and confocal microscopy, we found that NG2 was also expressed by immune cells, including T cells, macrophages, and dendritic cells (DCs). Assessment of recall T cell responses to the encephalitogen by proliferation assays and ELISA showed that, while WT and NG2KO T cells proliferated equally to the encephalitogenic peptide MOG35-55, NG2KO T cells were skewed towards a Th2-type response. Because DCs could be responsible for this effect, we assessed their expression of IL-12 by PCR and intracellular FACS. IL-12-expressing CD11c+ cells were significantly decreased in MOG35-55-primed NG2KO lymph node cells. Importantly, in WT mice, the proportion of IL-12-expressing cells was significantly lower in CD11c+ NG2- cells than in CD11c+ NG2+ cells. To assess the relevance of NG2 at immune system and CNS levels, we induced EAE in bone-marrow chimeric mice, generated with WT recipients of NG2KO bone-marrow cells and vice versa. Regardless of their original phenotype, mice receiving NG2KO bone marrow developed milder EAE than those receiving WT bone marrow. Our data suggest that NG2 plays a role in EAE not only at CNS/BBB level, but also at immune response level, impacting on DC activation and thereby their stimulation of reactive T cells, through controlling IL-12 expression.


Assuntos
Células Dendríticas/imunologia , Encefalomielite Autoimune Experimental/imunologia , Animais , Barreira Hematoencefálica/imunologia , Barreira Hematoencefálica/patologia , Células da Medula Óssea/imunologia , Transplante de Medula Óssea , Células Dendríticas/patologia , Encefalomielite Autoimune Experimental/patologia , Feminino , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Índice de Gravidade de Doença , Medula Espinal/imunologia , Medula Espinal/patologia , Linfócitos T/imunologia , Linfócitos T/patologia
11.
J Cell Mol Med ; 19(2): 485-500, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25521239

RESUMO

Bowel inflammatory fibrosis has been largely investigated, but an integrated assessment of remodelling in inflamed colon is lacking. This study evaluated tissue and cellular changes occurring in colonic wall upon induction of colitis, with a focus on neuromuscular compartment. Colitis was elicited in rats by 2,4-dinitrobenzenesulfonic acid (DNBS). After 6 and 21 days, the following parameters were assessed on paraffin sections from colonic samples: tissue injury and inflammatory infiltration by histology; collagen and elastic fibres by histochemistry; HuC/D, glial fibrillar acidic protein (GFAP), proliferating cell nuclear antigen (PCNA), nestin, substance P (SP), von Willebrand factor, c-Kit and transmembrane 16A/Anoctamin1 (TMEM16A/ANO1) by immunohistochemistry. TMEM16A/ANO1 was also examined in isolated colonic smooth muscle cells (ICSMCs). On day 6, inflammatory alterations and fibrosis were present in DNBS-treated rats; colonic wall thickening and fibrotic remodelling were evident on day 21. Colitis was associated with both an increase in collagen fibres and a decrease in elastic fibres. Moreover, the neuromuscular compartment of inflamed colon displayed a significant decrease in neuron density and increase in GFAP/PCNA-positive glia of myenteric ganglia, enhanced expression of neural SP, blood vessel remodelling, reduced c-Kit- and TMEM16A/ANO1-positive interstitial cells of Cajal (ICCs), as well as an increase in TMEM16A/ANO1 expression in muscle tissues and ICSMCs. The present findings provide an integrated view of the inflammatory and fibrotic processes occurring in the colonic neuromuscular compartment of rats with DNBS-induced colitis. These morphological alterations may represent a suitable basis for understanding early pathophysiological events related to bowel inflammatory fibrosis.


Assuntos
Colite/patologia , Miócitos de Músculo Liso/patologia , Animais , Colo/patologia , Inflamação/patologia , Masculino , Ratos , Ratos Sprague-Dawley
12.
J Inherit Metab Dis ; 36(3): 455-66, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23344887

RESUMO

This study investigates glio-vascular interactions in human fetal brain at midgestation, specifically examining the expression and immunolocalization of the CXCL12/CXCR4/CXCR7 ligand-receptor axis and its possible role in the vascular patterning of the developing brain. At midgestation, the telencephalic vesicles are characterized by well developed radial glia cells (RGCs), the first differentiated astrocytes and a basic vascular network mainly built of radial vessels. RGCs have been recognized to contribute to cerebral cortex neuro-vascular architecture and have also been demonstrated to act as a significant source of neural cells (Rakic, Brain Res 33:471-476, 1971; Malatesta et al, Development 127:5253-5263, 2000). According to our hypothesis CXCL12, a potent migration and differentiation chemokine released by RGCs, may act as a linking factor coordinating neuroblast migration with vessel growth and patterning through the activation of different ligand/receptor axes. The obtained results support this hypothesis showing that together with CXCR4/CXCR7-reactive neuroblasts, which migrate in close association with CXCL12 RGCs, layer-specific subsets of CXCL12 RGCs and astrocytes specifically contact the microvessel wall. Moreover, the CXCL12/CXCR4/CXCR7 system appears to be directly involved in microvessel growth, its members being differentially expressed in angiogenically activated microvessels and vascular sprouts.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/embriologia , Comunicação Celular/fisiologia , Quimiocina CXCL12/fisiologia , Receptores CXCR4/fisiologia , Receptores CXCR/fisiologia , Vasos Sanguíneos/embriologia , Vasos Sanguíneos/crescimento & desenvolvimento , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/fisiologia , Encéfalo/metabolismo , Encéfalo/patologia , Quimiocina CXCL12/metabolismo , Feto/metabolismo , Feto/patologia , Idade Gestacional , Humanos , Imuno-Histoquímica , Ligantes , Neovascularização Fisiológica/fisiologia , Neuroglia/metabolismo , Neuroglia/fisiologia , Neurônios/metabolismo , Neurônios/fisiologia , Receptores CXCR/metabolismo , Receptores CXCR4/metabolismo , Transdução de Sinais/fisiologia
13.
Neuroscientist ; : 10738584231163460, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37052336

RESUMO

Several studies have provided interesting evidence about the role of the bidirectional communication between the gut and brain in the onset and development of several pathologic conditions, including inflammatory bowel diseases (IBDs), neurodegenerative diseases, and related comorbidities. Indeed, patients with IBD can experience neurologic disorders, including depression and cognitive impairment, besides typical intestinal symptoms. In parallel, patients with neurodegenerative disease, such as Parkinson disease and Alzheimer disease, are often characterized by the occurrence of functional gastrointestinal disorders. In this context, enteric glial cells and brain astrocytes are emerging as pivotal players in the initiation/maintenance of neuroinflammatory responses, which appear to contribute to the alterations of intestinal and neurologic functions observed in patients with IBD and neurodegenerative disorders. The present review was conceived to provide a comprehensive and critical overview of the available knowledge on the morphologic, molecular, and functional changes occurring in the enteric glia and brain astroglia in IBDs and neurologic disorders. In addition, our intent is to identify whether such alterations could represent a common denominator involved in the onset of comorbidities associated with the aforementioned disorders. This might help to identify putative targets useful to develop novel pharmacologic approaches for the therapeutic management of such disturbances.

14.
Eur J Transl Myol ; 33(3)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37522802

RESUMO

The autophagy process recycles dysfunctional cellular components and protein aggregates by sequestering them in autophagosomes directed to lysosomes for enzymatic degradation. A basal level of autophagy is essential for skeletal muscle maintenance. Increased autophagy occurs in several forms of muscular dystrophy and in the merosin-deficient congenital muscular dystrophy 1A mouse model (dy3k/dy3k) lacking the laminin-α2 chain. This pilot study aimed to compare autophagy marker expression and autophagosomes presence using light and electron microscopes and western blotting in diagnostic muscle biopsies from newborns affected by different congenital muscular myopathies and dystrophies. Morphological examination showed dystrophic muscle features, predominance of type 2A myofibers, accumulation of autophagosomes in the subsarcolemmal areas, increased number of autophagosomes overexpressing LC3b, Beclin-1 and ATG5, in the merosin-deficient newborn suggesting an increased autophagy. In Duchenne muscular dystrophy, nemaline myopathy, and spinal muscular atrophy the predominant accumulation of p62+ puncta rather suggests an autophagy impairment.

15.
JCI Insight ; 8(8)2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36917178

RESUMO

Glioblastomas are among the deadliest human cancers and are highly vascularized. Angiogenesis is dynamic during brain development, almost quiescent in the adult brain but reactivated in vascular-dependent CNS pathologies, including brain tumors. The oncofetal axis describes the reactivation of fetal programs in tumors, but its relevance in endothelial and perivascular cells of the human brain vasculature in glial brain tumors is unexplored. Nucleolin is a regulator of cell proliferation and angiogenesis, but its roles in the brain vasculature remain unknown. Here, we studied the expression of Nucleolin in the neurovascular unit in human fetal brains, adult brains, and human gliomas in vivo as well as its effects on sprouting angiogenesis and endothelial metabolism in vitro. Nucleolin is highly expressed in endothelial and perivascular cells during brain development, downregulated in the adult brain, and upregulated in glioma. Moreover, Nucleolin expression correlated with glioma malignancy in vivo. In culture, siRNA-mediated Nucleolin knockdown reduced human brain endothelial cell (HCMEC) and HUVEC sprouting angiogenesis, proliferation, filopodia extension, and glucose metabolism. Furthermore, inhibition of Nucleolin with the aptamer AS1411 decreased brain endothelial cell proliferation in vitro. Mechanistically, Nucleolin knockdown in HCMECs and HUVECs uncovered regulation of angiogenesis involving VEGFR2 and of endothelial glycolysis. These findings identify Nucleolin as a neurodevelopmental factor reactivated in glioma that promotes sprouting angiogenesis and endothelial metabolism, characterizing Nucleolin as an oncofetal protein. Our findings have potential implications in the therapeutic targeting of glioma.


Assuntos
Neoplasias Encefálicas , Glioma , Adulto , Humanos , Glioma/metabolismo , Fosfoproteínas/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/patologia , Nucleolina
16.
Angiogenesis ; 15(4): 761-9, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22886085

RESUMO

During human foetal brain vascularization, activated CD31+/CD105+ endothelial cells are characterized by the emission of filopodial processes which also decorate the advancing tip of the vascular sprout. Together with filopodia, both the markers also reveal a number of plasma membrane-derived microvesicles (MVs) which are concentrated around the tip cell tuft of processes. At this site, MVs appear in tight contact with endothelial filopodia and follow these long processes, advancing into the surrounding neuropil to a possible cell target. These observations suggest that, like shedding vesicles of many other cell types that deliver signalling molecules and play a role in cell-to-cell communication, MVs sent out from endothelial tip cells could be involved in tip cell guidance and/or act on target cells, regulating cell-to-cell mutual recognition during vessel sprouting and final anastomosis. The results also suggest a new role for tip cell filopodia as conveyor processes for transporting MVs far from the cell of origin in a controlled microenvironment. Additional studies focused on the identification of MV content are needed to ultimately clarify the significance of tip cell MVs during human brain vascularization.


Assuntos
Membrana Celular/metabolismo , Endotélio Vascular/metabolismo , Endotélio Vascular/imunologia , Imunofluorescência , Humanos , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Molécula-1 de Adesão Celular Endotelial a Plaquetas/imunologia
17.
Cells ; 11(10)2022 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-35626743

RESUMO

Successful neuroprotection is only possible with contemporary microvascular protection. The prevention of disease-induced vascular modifications that accelerate brain damage remains largely elusive. An improved understanding of pericyte (PC) signalling could provide important insight into the function of the neurovascular unit (NVU), and into the injury-provoked responses that modify cell-cell interactions and crosstalk. Due to sharing the same basement membrane with endothelial cells, PCs have a crucial role in the control of endothelial, astrocyte, and oligodendrocyte precursor functions and hence blood-brain barrier stability. Both cerebrovascular and neurodegenerative diseases impair oxygen delivery and functionally impair the NVU. In this review, the role of PCs in central nervous system health and disease is discussed, considering their origin, multipotency, functions and also dysfunction, focusing on new possible avenues to modulate neuroprotection. Dysfunctional PC signalling could also be considered as a potential biomarker of NVU pathology, allowing us to individualize therapeutic interventions, monitor responses, or predict outcomes.


Assuntos
Células Endoteliais , Pericitos , Astrócitos , Barreira Hematoencefálica/patologia , Comunicação Celular , Células Endoteliais/fisiologia , Pericitos/patologia
18.
Fluids Barriers CNS ; 19(1): 68, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-36042496

RESUMO

BACKGROUND: In myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), several areas of demyelination are detectable in mouse cerebral cortex, where neuroinflammation events are associated with scarce inflammatory infiltrates and blood-brain barrier (BBB) impairment. In this condition, the administration of mesenchymal stem cells (MSCs) controls neuroinflammation, attenuating astrogliosis and promoting the acquisition of stem cell traits by astrocytes. To contribute to the understanding of the mechanisms involved in the pathogenesis of EAE in gray matter and in the reverting effects of MSC treatment, the neocortex of EAE-affected mice was investigated by analyzing the cellular source(s) of chemokine CCL2, a molecule involved in immune cell recruitment and BBB-microvessel leakage. METHODS: The study was carried out by immunohistochemistry (IHC) and dual RNAscope IHC/in situ hybridization methods, using astrocyte, NG2-glia, macrophage/microglia, and microglia elective markers combined with CCL2. RESULTS: The results showed that in EAE-affected mice, hypertrophic microglia are the primary source of CCL2, surround the cortex neurons and the damaged BBB microvessels. In EAE-affected mice treated with MSCs, microgliosis appeared diminished very soon (6 h) after treatment, an observation that was long-lasting (tested after 10 days). This was associated with a reduced CCL2 expression and with apparently preserved/restored BBB features. In conclusion, the hallmark of EAE in the mouse neocortex is a condition of microgliosis characterized by high levels of CCL2 expression. CONCLUSIONS: This finding supports relevant pathogenetic and clinical aspects of the human disease, while the demonstrated early control of neuroinflammation and BBB permeability exerted by treatment with MSCs may have important therapeutic implications.


Assuntos
Quimiocina CCL2 , Encefalomielite Autoimune Experimental , Neocórtex , Animais , Quimiocina CCL2/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Microglia , Doenças Neuroinflamatórias
19.
Neurobiol Dis ; 43(3): 678-89, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21679768

RESUMO

Experimentally induced autoimmune encephalomyelitis (EAE) in mice provides an animal model that shares many features with human demyelinating diseases such as multiple sclerosis (MS). To what extent the cerebral cortex is affected by the process of demyelination and how the corollary response of the oligodendrocyte lineage is explicated are still not completely known aspects of EAE. By performing a detailed in situ analysis of expression of myelin and oligodendrocyte markers we have identified areas of subpial demyelination in the cerebral cortex of animals with conventionally induced EAE conditions. On EAE-affected cerebral cortices, the distribution and relative abundance of cells of the oligodendrocyte lineage were assessed and compared with control mouse brains. The analysis demonstrated that A2B5(+) glial restricted progenitors (GRPs) and NG2(+)/PDGFR-α(+) oligodendrocyte precursor cells (OPCs) were increased in number during "early" disease, 20 days post MOG immunization, whereas in the "late" disease, 39 days post-immunization, they were strongly diminished, and there was an accompanying reduction in NG2(+)/O4(+) pre-oligodendrocytes and GST-π mature oligodendrocytes. These results, together with the observed steady-state amount of NG2(-)/O4(+) pre-myelinating oligodendrocytes, suggested that oligodendroglial precursors attempted to compensate for the progressive loss of myelin, although these cells appeared to fail to complete the last step of their differentiation program. Our findings confirm that this chronic model of EAE reproduces the features of neocortex pathology in progressive MS and suggest that, despite the proliferative response of the oligodendroglial precursors, the failure to accomplish final differentiation may be a key contributing factor to the impaired remyelination that characterizes these demyelinating conditions.


Assuntos
Células-Tronco Adultas/patologia , Córtex Cerebral/patologia , Doenças Desmielinizantes/patologia , Encefalomielite Autoimune Experimental/patologia , Oligodendroglia/patologia , Células-Tronco Adultas/metabolismo , Animais , Linhagem da Célula/fisiologia , Modelos Animais de Doenças , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Fibras Nervosas Mielinizadas/patologia , Proteínas do Tecido Nervoso/metabolismo , Oligodendroglia/metabolismo
20.
Methods Mol Biol ; 2206: 143-150, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32754816

RESUMO

Pericytes are integral part of neurovascular unit and play a role in the maintenance of blood-brain barrier integrity, angiogenesis, and cerebral blood flow regulation. Despite their important functional roles, a univocal phenotypic identification is still emerging also for the lack of a "pan-pericyte" marker. In the present study, we describe in detail the method for performing fluorescence immunohistochemistry on thick free-floating sections from human fetal brain in high resolution laser confocal microscopy. This method enables to obtain three-dimensional images of pericytes and provides insights about their distribution and localization in the microvessels of human developing brain.


Assuntos
Encéfalo/irrigação sanguínea , Microscopia Confocal/métodos , Microvasos/citologia , Pericitos/citologia , Barreira Hematoencefálica/citologia , Circulação Cerebrovascular/fisiologia , Humanos , Imageamento Tridimensional/métodos , Imuno-Histoquímica/métodos , Neovascularização Fisiológica/fisiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa