Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Nucleic Acids Res ; 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39217468

RESUMO

ADAR3 is a catalytically inactive member of the family of adenosine deaminases acting on RNA (ADARs). Here we have investigated its function in the context of the developing mouse brain. The expression of ADAR3 gradually increases throughout embryogenesis and drops after birth. Using primary cortical neurons, we show that ADAR3 is only expressed in a subpopulation of in vitro differentiated neurons, which suggests specific functions rather than being a general regulator of ADAR editing in the brain. The analysis of the ADAR3 interactome suggested a role in mRNA stability and translation, and we show that expression of ADAR3 in a neuronal cell line that is otherwise ADAR3-negative changes the expression and stability of a large number of mRNAs. Notably, we show that ADAR3 associates with polysomes and inhibits translation. We propose that ADAR3 binds to target mRNAs and stabilizes them in non-productive polysome complexes. Interestingly, the expression of ADAR3 downregulates genes related to neuronal differentiation and inhibits neurofilament outgrowth in vitro. In summary, we propose that ADAR3 negatively regulates neuronal differentiation, and that it does so by regulating mRNA stability and translation in an editing-independent manner.

2.
J Cell Sci ; 133(7)2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32253357

RESUMO

This report summarizes an international conference on molecular machines convened at New York University, Abu Dhabi by Piergiorgio Percipalle, George Shubeita and Serdal Kirmizialtin. The meeting was conceived around the epistemological question of what do we understand, or not understand (if we have open minds), about the degree to which cells operate by the individual actions of single enzymes or non-catalytic protein effectors, versus combinations of these in which their heterotypic association creates an entity that is more finely tuned and efficient - a machine. This theme was explored through a vivid series of talks, summarizing the latest findings on macromolecular complexes that operate in the nucleus or cytoplasm.


Assuntos
Núcleo Celular , Citoplasma , Citosol , Emirados Árabes Unidos
3.
Mol Genet Genomics ; 297(2): 463-484, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35187582

RESUMO

BRG1 and BRM are ATPase core subunits of the human SWI/SNF chromatin remodelling complexes mainly associated with transcriptional initiation. They also have a role in alternative splicing, which has been shown for BRM-containing SWI/SNF complexes at a few genes. Here, we have identified a subset of genes which harbour alternative exons that are affected by SWI/SNF ATPases by expressing the ATPases BRG1 and BRM in C33A cells, a BRG1- and BRM-deficient cell line, and analysed the effect on splicing by RNA sequencing. BRG1- and BRM-affected sub-sets of genes favouring both exon inclusion and exon skipping, with only a minor overlap between the ATPase. Some of the changes in alternative splicing induced by BRG1 and BRM expression did not require the ATPase activity. The BRG1-ATPase independent included exons displayed an exon signature of a high GC content. By investigating three genes with exons affected by the BRG-ATPase-deficient variant, we show that these exons accumulated phosphorylated RNA pol II CTD, both serine 2 and serine 5 phosphorylation, without an enrichment of the RNA polymerase II. The ATPases were recruited to the alternative exons, together with both core and signature subunits of SWI/SNF complexes, and promoted the binding of RNA binding factors to chromatin and RNA at the alternative exons. The interaction with the nascent RNP, however, did not reflect the association to chromatin. The hnRNPL, hnRNPU and SAM68 proteins associated with chromatin in cells expressing BRG1 and BRM wild type, but the binding of hnRNPU to the nascent RNP was excluded. This suggests that SWI/SNF can regulate alternative splicing by interacting with splicing-RNA binding factor and influence their binding to the nascent pre-mRNA particle.


Assuntos
DNA Helicases , Proteínas Nucleares , RNA , Fatores de Transcrição , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Processamento Alternativo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA Helicases/genética , DNA Helicases/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , RNA/genética , RNA/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
4.
Bioessays ; 42(5): e1900225, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32105369

RESUMO

RNA polymerase II is recruited to DNA double-strand breaks (DSBs), transcribes the sequences that flank the break and produces a novel RNA type that has been termed damage-induced long non-coding RNA (dilncRNA). DilncRNAs can be processed into short, miRNA-like molecules or degraded by different ribonucleases. They can also form double-stranded RNAs or DNA:RNA hybrids. The DNA:RNA hybrids formed at DSBs contribute to the recruitment of repair factors during the early steps of homologous recombination (HR) and, in this way, contribute to the accuracy of the DNA repair. However, if not resolved, the DNA:RNA hybrids are highly mutagenic and prevent the recruitment of later HR factors. Here recent discoveries about the synthesis, processing, and degradation of dilncRNAs are revised. The focus is on RNA clearance, a necessary step for the successful repair of DSBs and the aim is to reconcile contradictory findings on the effects of dilncRNAs and DNA:RNA hybrids in HR.


Assuntos
Quebras de DNA de Cadeia Dupla , RNA , DNA/genética , Reparo do DNA , Recombinação Homóloga , RNA/genética
5.
Nucleic Acids Res ; 46(22): 11869-11882, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30418607

RESUMO

Recent studies suggest that transcription takes place at DNA double-strand breaks (DSBs), that transcripts at DSBs are processed by Drosha and Dicer into damage-induced small RNAs (diRNAs), and that diRNAs are required for DNA repair. However, diRNAs have been mostly detected in reporter constructs or repetitive sequences, and their existence at endogenous loci has been questioned by recent reports. Using the homing endonuclease I-PpoI, we have investigated diRNA production in genetically unperturbed human and mouse cells. I-PpoI is an ideal tool to clarify the requirements for diRNA production because it induces DSBs in different types of loci: the repetitive 28S locus, unique genes and intergenic loci. We show by extensive sequencing that the rDNA locus produces substantial levels of diRNAs, whereas unique genic and intergenic loci do not. Further characterization of diRNAs emerging from the 28S locus reveals the existence of two diRNA subtypes. Surprisingly, Drosha and its partner DGCR8 are dispensable for diRNA production and only one diRNAs subtype depends on Dicer processing. Furthermore, we provide evidence that diRNAs are incorporated into Argonaute. Our findings provide direct evidence for diRNA production at endogenous loci in mammalian cells and give insights into RNA processing at DSBs.


Assuntos
RNA Helicases DEAD-box/genética , Reparo do DNA , DNA Intergênico/genética , DNA/genética , Endodesoxirribonucleases/genética , RNA/genética , Ribonuclease III/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Linhagem Celular , RNA Helicases DEAD-box/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Dano ao DNA , DNA Intergênico/metabolismo , Endodesoxirribonucleases/metabolismo , Loci Gênicos , Células HeLa , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ribonuclease III/metabolismo
6.
Nucleic Acids Res ; 46(16): 8557-8573, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-29860334

RESUMO

SWI/SNF complexes associate with genes and regulate transcription by altering the chromatin at the promoter. It has recently been shown that these complexes play a role in pre-mRNA processing by associating at alternative splice sites. Here, we show that SWI/SNF complexes are involved also in pre-mRNA 3' end maturation by facilitating 3' end cleavage of specific pre-mRNAs. Comparative proteomics show that SWI/SNF ATPases interact physically with subunits of the cleavage and polyadenylation complexes in fly and human cells. In Drosophila melanogaster, the SWI/SNF ATPase Brahma (dBRM) interacts with the CPSF6 subunit of cleavage factor I. We have investigated the function of dBRM in 3' end formation in S2 cells by RNA interference, single-gene analysis and RNA sequencing. Our data show that dBRM facilitates pre-mRNA cleavage in two different ways: by promoting the association of CPSF6 to the cleavage region and by stabilizing positioned nucleosomes downstream of the cleavage site. These findings show that SWI/SNF complexes play a role also in the cleavage of specific pre-mRNAs in animal cells.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Processamento de Terminações 3' de RNA , Ribonucleoproteína Nuclear Pequena U1/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Células HeLa , Humanos , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Transativadores/genética , Transativadores/metabolismo
7.
BMC Genomics ; 19(1): 367, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29776334

RESUMO

BACKGROUND: Brahma (BRM) is the only catalytic subunit of the SWI/SNF chromatin-remodeling complex of Drosophila melanogaster. The function of SWI/SNF in transcription has long been attributed to its ability to remodel nucleosomes, which requires the ATPase activity of BRM. However, recent studies have provided evidence for a non-catalytic function of BRM in the transcriptional regulation of a few specific genes. RESULTS: Here we have used RNA-seq and ChIP-seq to identify the BRM target genes in S2 cells, and we have used a catalytically inactive BRM mutant (K804R) that is unable to hydrolyze ATP to investigate the magnitude of the non-catalytic function of BRM in transcription regulation. We show that 49% of the BRM target genes in S2 cells are regulated through mechanisms that do not require BRM to have an ATPase activity. We also show that the catalytic and non-catalytic mechanisms of SWI/SNF regulation operate on two subsets of genes that differ in promoter architecture and are linked to different biological processes. CONCLUSIONS: This study shows that the non-catalytic role of SWI/SNF in transcription regulation is far more prevalent than previously anticipated and that the genes that are regulated by SWI/SNF through ATPase-dependent and ATPase-independent mechanisms have specialized roles in different cellular and developmental processes.


Assuntos
Trifosfato de Adenosina/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Nucleossomos/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Transativadores/metabolismo , Adenosina Trifosfatases/metabolismo , Animais , Linhagem Celular , Genômica , Regiões Promotoras Genéticas/genética
8.
PLoS Genet ; 11(9): e1005523, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26389589

RESUMO

RNA surveillance factors are involved in heterochromatin regulation in yeast and plants, but less is known about the possible roles of ribonucleases in the heterochromatin of animal cells. Here we show that RRP6, one of the catalytic subunits of the exosome, is necessary for silencing heterochromatic repeats in the genome of Drosophila melanogaster. We show that a fraction of RRP6 is associated with heterochromatin, and the analysis of the RRP6 interaction network revealed physical links between RRP6 and the heterochromatin factors HP1a, SU(VAR)3-9 and RPD3. Moreover, genome-wide studies of RRP6 occupancy in cells depleted of SU(VAR)3-9 demonstrated that SU(VAR)3-9 contributes to the tethering of RRP6 to a subset of heterochromatic loci. Depletion of the exosome ribonucleases RRP6 and DIS3 stabilizes heterochromatic transcripts derived from transposons and repetitive sequences, and renders the heterochromatin less compact, as shown by micrococcal nuclease and proximity-ligation assays. Such depletion also increases the amount of HP1a bound to heterochromatic transcripts. Taken together, our results suggest that SU(VAR)3-9 targets RRP6 to a subset of heterochromatic loci where RRP6 degrades chromatin-associated non-coding RNAs in a process that is necessary to maintain the packaging of the heterochromatin.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Heterocromatina/metabolismo , Proteínas Repressoras/metabolismo , Animais , Elementos de DNA Transponíveis , Drosophila melanogaster/genética , Inativação Gênica , Genoma , Heterocromatina/genética , Ligação Proteica , RNA Mensageiro/genética
9.
J Cell Sci ; 128(6): 1097-107, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25632158

RESUMO

The exosome acts on different RNA substrates and plays important roles in RNA metabolism. The fact that short non-coding RNAs are involved in the DNA damage response led us to investigate whether the exosome factor RRP6 of Drosophila melanogaster and its human ortholog EXOSC10 play a role in DNA repair. Here, we show that RRP6 and EXOSC10 are recruited to DNA double-strand breaks (DSBs) in S2 cells and HeLa cells, respectively. Depletion of RRP6/EXOSC10 does not interfere with the phosphorylation of the histone variant H2Av (Drosophila) or H2AX (humans), but impairs the recruitment of the homologous recombination factor RAD51 to the damaged sites, without affecting RAD51 levels. The recruitment of RAD51 to DSBs in S2 cells is also inhibited by overexpression of RRP6-Y361A-V5, a catalytically inactive RRP6 mutant. Furthermore, cells depleted of RRP6 or EXOSC10 are more sensitive to radiation, which is consistent with RRP6/EXOSC10 playing a role in DNA repair. RRP6/EXOSC10 can be co-immunoprecipitated with RAD51, which links RRP6/EXOSC10 to the homologous recombination pathway. Taken together, our results suggest that the ribonucleolytic activity of RRP6/EXOSC10 is required for the recruitment of RAD51 to DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Exorribonucleases/metabolismo , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Recombinação Homóloga/genética , Animais , Western Blotting , Proliferação de Células , Imunoprecipitação da Cromatina , Proteínas de Drosophila/genética , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Exorribonucleases/antagonistas & inibidores , Exorribonucleases/genética , Complexo Multienzimático de Ribonucleases do Exossomo/antagonistas & inibidores , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Células HeLa , Histonas/metabolismo , Humanos , Fosforilação , RNA Interferente Pequeno/genética , Rad51 Recombinase/metabolismo
10.
FASEB J ; 30(8): 2860-73, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27127100

RESUMO

Actin and nuclear myosin 1 (NM1) are regulators of transcription and chromatin organization. Using a genome-wide approach, we report here that ß-actin binds intergenic and genic regions across the mammalian genome, associated with both protein-coding and rRNA genes. Within the rDNA, the distribution of ß-actin correlated with NM1 and the other subunits of the B-WICH complex, WSTF and SNF2h. In ß-actin(-/-) mouse embryonic fibroblasts (MEFs), we found that rRNA synthesis levels decreased concomitantly with drops in RNA polymerase I (Pol I) and NM1 occupancies across the rRNA gene. Reintroduction of wild-type ß-actin, in contrast to mutated forms with polymerization defects, efficiently rescued rRNA synthesis underscoring the direct role for a polymerization-competent form of ß-actin in Pol I transcription. The rRNA synthesis defects in the ß-actin(-/-) MEFs are a consequence of epigenetic reprogramming with up-regulation of the repressive mark H3K4me1 (monomethylation of lys4 on histone H3) and enhanced chromatin compaction at promoter-proximal enhancer (T0 sequence), which disturb binding of the transcription factor TTF1. We propose a novel genome-wide mechanism where the polymerase-associated ß-actin synergizes with NM1 to coordinate permissive chromatin with Pol I transcription, cell growth, and proliferation.-Almuzzaini, B., Sarshad, A. A. , Rahmanto, A. S., Hansson, M. L., Von Euler, A., Sangfelt, O., Visa, N., Farrants, A.-K. Ö., Percipalle, P. In ß-actin knockouts, epigenetic reprogramming and rDNA transcription inactivation lead to growth and proliferation defects.


Assuntos
Actinas/metabolismo , Reprogramação Celular/fisiologia , DNA Ribossômico/metabolismo , Epigênese Genética/fisiologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Actinas/genética , Animais , Células Cultivadas , Cromatina , DNA Ribossômico/genética , Camundongos , Miosina Tipo I/genética , Miosina Tipo I/metabolismo , Proteínas Pol1 do Complexo de Iniciação de Transcrição/fisiologia , Transcrição Gênica/fisiologia
11.
PLoS Genet ; 10(6): e1004390, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24901984

RESUMO

Nuclear myosin 1c (NM1) mediates RNA polymerase I (pol I) transcription activation and cell cycle progression by facilitating PCAF-mediated H3K9 acetylation, but the molecular mechanism by which NM1 is regulated remains unclear. Here, we report that at early G1 the glycogen synthase kinase (GSK) 3ß phosphorylates and stabilizes NM1, allowing for NM1 association with the chromatin. Genomic analysis by ChIP-Seq showed that this mechanism occurs on the rDNA as active GSK3ß selectively occupies the gene. ChIP assays and transmission electron microscopy in GSK3ß-/- mouse embryonic fibroblasts indicated that at G1 rRNA synthesis is suppressed due to decreased H3K9 acetylation leading to a chromatin state incompatible with transcription. We found that GSK3ß directly phosphorylates the endogenous NM1 on a single serine residue (Ser-1020) located within the NM1 C-terminus. In G1 this phosphorylation event stabilizes NM1 and prevents NM1 polyubiquitination by the E3 ligase UBR5 and proteasome-mediated degradation. We conclude that GSK3ß-mediated phosphorylation of NM1 is required for pol I transcription activation.


Assuntos
Fase G1/genética , Quinase 3 da Glicogênio Sintase/metabolismo , Miosina Tipo I/metabolismo , Ativação Transcricional/genética , Ubiquitina-Proteína Ligases/metabolismo , Acetilação , Animais , Linhagem Celular , Cromatina/genética , DNA Ribossômico/genética , Proteínas F-Box/genética , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Células HEK293 , Células HeLa , Histonas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Fosforilação , Proteólise , Interferência de RNA , RNA Polimerase I/genética , RNA Interferente Pequeno , Ubiquitina-Proteína Ligases/genética , Ubiquitinação , Fatores de Transcrição de p300-CBP/metabolismo
12.
Semin Cell Dev Biol ; 32: 37-46, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24713468

RESUMO

Eukaryotic cells carry out quality control (QC) over the processes of RNA biogenesis to inactivate or eliminate defective transcripts, and to avoid their production. In the case of protein-coding transcripts, the quality controls can sense defects in the assembly of mRNA-protein complexes, in the processing of the precursor mRNAs, and in the sequence of open reading frames. Different types of defect are monitored by different specialized mechanisms. Some of them involve dedicated factors whose function is to identify faulty molecules and target them for degradation. Others are the result of a more subtle balance in the kinetics of opposing activities in the mRNA biogenesis pathway. One way or another, all such mechanisms hinder the expression of the defective mRNAs through processes as diverse as rapid degradation, nuclear retention and transcriptional silencing. Three major degradation systems are responsible for the destruction of the defective transcripts: the exosome, the 5'-3' exoribonucleases, and the nonsense-mediated mRNA decay (NMD) machinery. This review summarizes recent findings on the cotranscriptional quality control of mRNA biogenesis, and speculates that a protein-protein interaction network integrates multiple mRNA degradation systems with the transcription machinery.


Assuntos
Regulação da Expressão Gênica , Redes Reguladoras de Genes , RNA Mensageiro/metabolismo , Ribonucleoproteínas/metabolismo , Animais , Complexo Multienzimático de Ribonucleases do Exossomo/genética , Complexo Multienzimático de Ribonucleases do Exossomo/metabolismo , Humanos , Modelos Genéticos , Ligação Proteica , RNA Mensageiro/genética , Ribonucleoproteínas/genética , Transcrição Gênica
13.
BMC Genomics ; 15: 819, 2014 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-25261295

RESUMO

BACKGROUND: The polytene nuclei of the dipteran Chironomus tentans (Ch. tentans) with their Balbiani ring (BR) genes constitute an exceptional model system for studies of the expression of endogenous eukaryotic genes. Here, we report the first draft genome of Ch. tentans and characterize its gene expression machineries and genomic architecture of the BR genes. RESULTS: The genome of Ch. tentans is approximately 200 Mb in size, and has a low GC content (31%) and a low repeat fraction (15%) compared to other Dipteran species. Phylogenetic inference revealed that Ch. tentans is a sister clade to mosquitoes, with a split 150-250 million years ago. To characterize the Ch. tentans gene expression machineries, we identified potential orthologus sequences to more than 600 Drosophila melanogaster (D. melanogaster) proteins involved in the expression of protein-coding genes. We report novel data on the organization of the BR gene loci, including a novel putative BR gene, and we present a model for the organization of chromatin bundles in the BR2 puff based on genic and intergenic in situ hybridizations. CONCLUSIONS: We show that the molecular machineries operating in gene expression are largely conserved between Ch. tentans and D. melanogaster, and we provide enhanced insight into the organization and expression of the BR genes. Our data strengthen the generality of the BR genes as a unique model system and provide essential background for in-depth studies of the biogenesis of messenger ribonucleoprotein complexes.


Assuntos
Chironomidae/genética , Puffs Cromossômicos , Genoma , Animais , Mapeamento de Sequências Contíguas , Drosophila melanogaster/genética , Loci Gênicos , Microscopia Eletrônica de Transmissão , Anotação de Sequência Molecular , Análise de Sequência de DNA , Transcriptoma
14.
RNA ; 18(8): 1466-74, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22745224

RESUMO

Rrp6 is an exoribonuclease involved in the quality control of mRNA biogenesis. We have analyzed the association of Rrp6 with the Balbiani ring pre-mRNPs of Chironomus tentans to obtain insight into the role of Rrp6 in splicing surveillance. Rrp6 is recruited to transcribed genes and its distribution along the genes does not correlate with the positions of exons and introns. In the nucleoplasm, Rrp6 is bound to both unspliced and spliced transcripts. Rrp6 is released from the mRNPs in the vicinity of the nuclear pore before nucleo-cytoplasmic translocation. We show that Rrp6 is associated with newly synthesized transcripts during all the nuclear steps of gene expression and is associated with the transcripts independently of their splicing status. These observations suggest that the quality control of pre-mRNA splicing is not based on the selective recruitment of the exoribonuclease Rrp6 to unprocessed mRNAs.


Assuntos
Proteínas de Drosophila/genética , Poro Nuclear/genética , Proteínas Nucleares/genética , Precursores de RNA/genética , Splicing de RNA/genética , Ribonucleoproteínas/genética , Transcrição Gênica , Animais , Western Blotting , Núcleo Celular/genética , Células Cultivadas , Chironomidae/genética , Chironomidae/metabolismo , Imunoprecipitação da Cromatina , Citoplasma/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Éxons/genética , Complexo Multienzimático de Ribonucleases do Exossomo , Imunofluorescência , Íntrons/genética , Proteínas Nucleares/imunologia , RNA Mensageiro/genética , Coelhos , Glândulas Salivares/citologia , Glândulas Salivares/metabolismo
15.
RNA Biol ; 11(2): 134-45, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24526065

RESUMO

The mod(mdg4) locus of Drosophila melanogaster contains several transcription units encoded on both DNA strands. The mod(mdg4) pre-mRNAs are alternatively spliced, and a very significant fraction of the mature mod(mdg4) mRNAs are formed by trans-splicing. We have studied the transcripts derived from one of the anti-sense regions within the mod(mdg4) locus in order to shed light on the expression of this complex locus. We have characterized the expression of anti-sense mod(mdg4) transcripts in S2 cells, mapped their transcription start sites and cleavage sites, identified and quantified alternatively spliced transcripts, and obtained insight into the regulation of the mod(mdg4) trans-splicing. In a previous study, we had shown that the alternative splicing of some mod(mdg4) transcripts was regulated by Brahma (BRM), the ATPase subunit of the SWI/SNF chromatin-remodeling complex. Here we show, using RNA interference and overexpression of recombinant BRM proteins, that the levels of BRM affect specifically the abundance of a trans-spliced mod(mdg4) mRNA isoform in both S2 cells and larvae. This specific effect on trans-splicing is accompanied by a local increase in the density of RNA polymerase II and by a change in the phosphorylation state of the C-terminal domain of the large subunit of RNA polymerase II. Interestingly, the regulation of the mod(mdg4) splicing by BRM is independent of the ATPase activity of BRM, which suggests that the mechanism by which BRM modulates trans-splicing is independent of its chromatin-remodeling activity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Interferência de RNA , RNA/metabolismo , Transativadores/metabolismo , Trans-Splicing , Fatores de Transcrição/genética , Processamento Alternativo , Animais , Linhagem Celular , Drosophila melanogaster/embriologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Clivagem do RNA , Isoformas de RNA/metabolismo , RNA Polimerase II/metabolismo , Sítio de Iniciação de Transcrição
16.
J Proteome Res ; 12(4): 1969-79, 2013 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-23477467

RESUMO

The pyrimidine analogue 5-fluorouracil (5FU) is used as a treatment for solid tumors, but its mechanism of action is not fully understood. We have used mass spectrometry to study the mechanism of action of 5FU, and we have measured the effects of this drug on the composition and on the turnover of the proteome of RKO cancer cells. We have identified novel potential targets of 5FU that are affected after very short exposure times. We have also shown that 5FU has a massive effect on the proteins involved in RNA metabolism. After only 1 h of treatment, 5FU causes a post-transcriptional reduction in the abundance of components of the translation machinery (mostly ribosomal proteins), and this reduction is accompanied by a down-regulation of the translational capacity of the cells. Neither rapamycin nor raltitrexed, two drugs that also block cell proliferation, reduce the abundances of ribosomal proteins as 5FU does, which suggests that the down-regulation of ribosomal proteins is coupled to the mechanism of action of 5FU. Some of our observations conflict with previous reports based on RNA quantification. This shows how important it is to complement RNA profiling studies with analyses of drug toxicity at the protein level.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Fluoruracila/farmacologia , Proteoma/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/genética , Regulação para Baixo/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas Ribossômicas/metabolismo , Espectrometria de Massas em Tandem
17.
Curr Opin Cell Biol ; 18(3): 261-6, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16687246

RESUMO

Recent research has provided convincing evidence that actin plays several important roles in gene transcription. First, actin can bind transcription factors and determine their subcellular localization. Second, actin is a component of chromatin remodeling complexes involved in transcriptional activation. Third, actin binds directly to the RNA polymerases I, II and III, and is required for their full transcriptional activity. Fourth, actin associates with nascent mRNPs and participates in the recruitment of histone modifiers to transcribed genes. We do not know yet whether these functions are general, or restricted to certain subsets of genes.


Assuntos
Actinas/fisiologia , Regulação da Expressão Gênica , Transcrição Gênica , Animais , Núcleo Celular/metabolismo , Montagem e Desmontagem da Cromatina , Citoesqueleto/metabolismo , Humanos , Modelos Genéticos , Miosinas/metabolismo , Precursores de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo
18.
PLoS Genet ; 5(5): e1000470, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19424417

RESUMO

The SWI/SNF chromatin remodeling complexes regulate the transcription of many genes by remodeling nucleosomes at promoter regions. In Drosophila, SWI/SNF plays an important role in ecdysone-dependent transcription regulation. Studies in human cells suggest that Brahma (Brm), the ATPase subunit of SWI/SNF, regulates alternative pre-mRNA splicing by modulating transcription elongation rates. We describe, here, experiments that study the association of Brm with transcribed genes in Chironomus tentans and Drosophila melanogaster, the purpose of which was to further elucidate the mechanisms by which Brm regulates pre-mRNA processing. We show that Brm becomes incorporated into nascent Balbiani ring pre-mRNPs co-transcriptionally and that the human Brm and Brg1 proteins are associated with RNPs. We have analyzed the expression profiles of D. melanogaster S2 cells in which the levels of individual SWI/SNF subunits have been reduced by RNA interference, and we show that depletion of SWI/SNF core subunits changes the relative abundance of alternative transcripts from a subset of genes. This observation, and the fact that a fraction of Brm is not associated with chromatin but with nascent pre-mRNPs, suggest that SWI/SNF affects pre-mRNA processing by acting at the RNA level. Ontology enrichment tests indicate that the genes that are regulated post-transcriptionally by SWI/SNF are mostly enzymes and transcription factors that regulate postembryonic developmental processes. In summary, the data suggest that SWI/SNF becomes incorporated into nascent pre-mRNPs and acts post-transcriptionally to regulate not only the amount of mRNA synthesized from a given promoter but also the type of alternative transcript produced.


Assuntos
Proteínas de Drosophila/metabolismo , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteínas/metabolismo , Processamento Alternativo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Chironomidae/genética , Chironomidae/metabolismo , Cromossomos/genética , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Genes de Insetos , Células HeLa , Humanos , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Microscopia Imunoeletrônica , Modelos Biológicos , Precursores de RNA/genética , Processamento Pós-Transcricional do RNA , Ribonucleoproteína Nuclear Pequena U1/genética , Ribonucleoproteínas/genética , Transativadores/genética , Transativadores/metabolismo
19.
BMC Mol Biol ; 12: 46, 2011 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-22047075

RESUMO

BACKGROUND: The SWI/SNF chromatin remodeling factors have the ability to remodel nucleosomes and play essential roles in key developmental processes. SWI/SNF complexes contain one subunit with ATPase activity, which in Drosophila melanogaster is called Brahma (Brm). The regulatory activities of SWI/SNF have been attributed to its influence on chromatin structure and transcription regulation, but recent observations have revealed that the levels of Brm affect the relative abundances of transcripts that are formed by alternative splicing and/or polyadenylation of the same pre-mRNA. RESULTS: We have investigated whether the function of Brm in pre-mRNA processing in Drosophila melanogaster is mediated by Brm alone or by the SWI/SNF complex. We have analyzed the effects of depleting individual SWI/SNF subunits on pre-mRNA processing throughout the genome, and we have identified a subset of transcripts that are affected by depletion of the SWI/SNF core subunits Brm, Snr1 or Mor. The fact that depletion of different subunits targets a subset of common transcripts suggests that the SWI/SNF complex is responsible for the effects observed on pre-mRNA processing when knocking down Brm. We have also depleted Brm in larvae and we have shown that the levels of SWI/SNF affect the pre-mRNA processing outcome in vivo. CONCLUSIONS: We have shown that SWI/SNF can modulate alternative pre-mRNA processing, not only in cultured cells but also in vivo. The effect is restricted to and specific for a subset of transcripts. Our results provide novel insights into the mechanisms by which SWI/SNF regulates transcript diversity and proteomic diversity in higher eukaryotes.


Assuntos
Processamento Alternativo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Precursores de RNA/genética , Precursores de RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U1/genética , Transativadores/genética , Transativadores/metabolismo
20.
J Cell Biol ; 172(7): 967-71, 2006 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-16549500

RESUMO

Actin is not only a major cytoskeletal component in all eukaryotic cells but also a nuclear protein that plays a role in gene transcription. We put together data from in vitro and in vivo experiments that begin to provide insights into the molecular mechanisms by which actin functions in transcription. Recent studies performed in vitro have suggested that actin, in direct contact with the transcription apparatus, is required in an early step of transcription that is common to all three eukaryotic RNA polymerases. In addition, there is evidence from in vivo studies that actin is involved in the transcription elongation of class II genes. In this case, actin is bound to a specific subset of premessenger RNA binding proteins, and the actin-messenger RNP complex may constitute a molecular platform for recruitment of histone-modifying enzymes. We discuss a general model for actin in RNA polymerase II transcription whereby actin works as a conformational switch in conjunction with specific adaptors to facilitate the remodeling of large macromolecular assemblies at the promoter and along the active gene.


Assuntos
Actinas/fisiologia , Proteínas Nucleares/fisiologia , Transcrição Gênica , Actomiosina/fisiologia , Animais , Montagem e Desmontagem da Cromatina/fisiologia , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Humanos , Proteínas de Insetos/fisiologia , Modelos Biológicos , Proteínas Motores Moleculares/fisiologia , Miosinas/fisiologia , RNA Ribossômico/biossíntese , Proteínas de Ligação a RNA
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa