Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 526(7574): 583-6, 2015 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-26466569

RESUMO

Oncogenic activation of BRAF fuels cancer growth by constitutively promoting RAS-independent mitogen-activated protein kinase (MAPK) pathway signalling. Accordingly, RAF inhibitors have brought substantially improved personalized treatment of metastatic melanoma. However, these targeted agents have also revealed an unexpected consequence: stimulated growth of certain cancers. Structurally diverse ATP-competitive RAF inhibitors can either inhibit or paradoxically activate the MAPK pathway, depending whether activation is by BRAF mutation or by an upstream event, such as RAS mutation or receptor tyrosine kinase activation. Here we have identified next-generation RAF inhibitors (dubbed 'paradox breakers') that suppress mutant BRAF cells without activating the MAPK pathway in cells bearing upstream activation. In cells that express the same HRAS mutation prevalent in squamous tumours from patients treated with RAF inhibitors, the first-generation RAF inhibitor vemurafenib stimulated in vitro and in vivo growth and induced expression of MAPK pathway response genes; by contrast the paradox breakers PLX7904 and PLX8394 had no effect. Paradox breakers also overcame several known mechanisms of resistance to first-generation RAF inhibitors. Dissociating MAPK pathway inhibition from paradoxical activation might yield both improved safety and more durable efficacy than first-generation RAF inhibitors, a concept currently undergoing human clinical evaluation with PLX8394.


Assuntos
Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Ativação Enzimática/efeitos dos fármacos , Feminino , Genes ras/genética , Compostos Heterocíclicos com 2 Anéis/efeitos adversos , Compostos Heterocíclicos com 2 Anéis/farmacologia , Humanos , Indóis/efeitos adversos , Indóis/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Camundongos , Modelos Biológicos , Mutação/genética , Inibidores de Proteínas Quinases/efeitos adversos , Proteínas Proto-Oncogênicas B-raf/genética , Sulfonamidas/efeitos adversos , Sulfonamidas/farmacologia , Vemurafenib
2.
N Engl J Med ; 373(5): 428-37, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26222558

RESUMO

BACKGROUND: Expression of the colony-stimulating factor 1 (CSF1) gene is elevated in most tenosynovial giant-cell tumors. This observation has led to the discovery and clinical development of therapy targeting the CSF1 receptor (CSF1R). METHODS: Using x-ray co-crystallography to guide our drug-discovery research, we generated a potent, selective CSF1R inhibitor, PLX3397, that traps the kinase in the autoinhibited conformation. We then conducted a multicenter, phase 1 trial in two parts to analyze this compound. In the first part, we evaluated escalations in the dose of PLX3397 that was administered orally in patients with solid tumors (dose-escalation study). In the second part, we evaluated PLX3397 at the chosen phase 2 dose in an extension cohort of patients with tenosynovial giant-cell tumors (extension study). Pharmacokinetic and tumor responses in the enrolled patients were assessed, and CSF1 in situ hybridization was performed to confirm the mechanism of action of PLX3397 and that the pattern of CSF1 expression was consistent with the pathological features of tenosynovial giant-cell tumor. RESULTS: A total of 41 patients were enrolled in the dose-escalation study, and an additional 23 patients were enrolled in the extension study. The chosen phase 2 dose of PLX3397 was 1000 mg per day. In the extension study, 12 patients with tenosynovial giant-cell tumors had a partial response and 7 patients had stable disease. Responses usually occurred within the first 4 months of treatment, and the median duration of response exceeded 8 months. The most common adverse events included fatigue, change in hair color, nausea, dysgeusia, and periorbital edema; adverse events rarely led to discontinuation of treatment. CONCLUSIONS: Treatment of tenosynovial giant-cell tumors with PLX3397 resulted in a prolonged regression in tumor volume in most patients. (Funded by Plexxikon; ClinicalTrials.gov number, NCT01004861.).


Assuntos
Aminopiridinas/administração & dosagem , Tumores de Células Gigantes/tratamento farmacológico , Pirróis/administração & dosagem , Receptor de Fator Estimulador de Colônias de Macrófagos/antagonistas & inibidores , Neoplasias de Tecidos Moles/tratamento farmacológico , Adulto , Idoso , Aminopiridinas/efeitos adversos , Aminopiridinas/farmacocinética , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Descoberta de Drogas , Feminino , Tumores de Células Gigantes/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Pirróis/efeitos adversos , Pirróis/farmacocinética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo , Neoplasias de Tecidos Moles/patologia , Tendões/patologia , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa