Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
J Immunol ; 194(1): 455-62, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25404358

RESUMO

Inflammasomes are large protein complexes induced by a wide range of microbial, stress, and environmental stimuli that function to induce cell death and inflammatory cytokine processing. Formation of an inflammasome involves dramatic relocalization of the inflammasome adapter protein apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) into a single speck. We have developed a flow cytometric assay for inflammasome formation, time of flight inflammasome evaluation, which detects the change in ASC distribution within the cell. The transit of ASC into the speck is detected by a decreased width or increased height of the pulse of emitted fluorescence. This assay can be used to quantify native inflammasome formation in subsets of mixed cell populations ex vivo. It can also provide a rapid and sensitive technique for investigating molecular interactions in inflammasome formation, by comparison of wild-type and mutant proteins in inflammasome reconstitution experiments.


Assuntos
Proteínas Reguladoras de Apoptose/imunologia , Citometria de Fluxo/métodos , Inflamassomos/imunologia , Animais , Apoptose/imunologia , Proteínas Reguladoras de Apoptose/genética , Células da Medula Óssea/imunologia , Proteínas Adaptadoras de Sinalização CARD/imunologia , Caspase 1/genética , Linhagem Celular , Células HEK293 , Humanos , Inflamassomos/análise , Mediadores da Inflamação/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Knockout
2.
Sci Signal ; 17(820): eabg8145, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38261657

RESUMO

Inflammasomes are multiprotein complexes that drive inflammation and contribute to protective immunity against pathogens and immune pathology in autoinflammatory diseases. Inflammasomes assemble when an inflammasome scaffold protein senses an activating signal and forms a signaling platform with the inflammasome adaptor protein ASC. The NLRP subfamily of NOD-like receptors (NLRs) includes inflammasome nucleators (such as NLRP3) and also NLRP12, which is genetically linked to familial autoinflammatory disorders that resemble diseases caused by gain-of-function NLRP3 mutants that generate a hyperactive NLRP3 inflammasome. We performed a screen to identify ASC inflammasome-nucleating proteins among NLRs that have the canonical pyrin-NACHT-LRR domain structure. Only NLRP3 and NLRP6 could initiate ASC polymerization to form "specks," and NLRP12 failed to nucleate ASC polymerization. However, wild-type NLRP12 inhibited ASC inflammasome assembly induced by wild-type and gain-of-function mutant NLRP3, an effect not seen with disease-associated NLRP12 mutants. The capacity of NLRP12 to suppress NLRP3 inflammasome assembly was limited to human NLRP3 and was not observed for wild-type murine NLRP3. Furthermore, peripheral blood mononuclear cells from patients with an NLRP12 mutant-associated inflammatory disorder produced increased amounts of the inflammatory cytokine IL-1ß in response to NLRP3 stimulation. Thus, our findings provide insights into NLRP12 biology and suggest that NLRP3 inhibitors in clinical trials for NLRP3-driven diseases may also be effective in treating NLRP12-associated autoinflammatory diseases.


Assuntos
Doenças Hereditárias Autoinflamatórias , Inflamassomos , Animais , Humanos , Camundongos , Proteínas Adaptadoras de Transdução de Sinal , Peptídeos e Proteínas de Sinalização Intracelular , Leucócitos Mononucleares , Proteína 3 que Contém Domínio de Pirina da Família NLR , Síndrome
3.
J Mol Biol ; 430(2): 238-247, 2018 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-29100888

RESUMO

Canonical inflammasomes are multiprotein complexes that can activate both caspase-1 and caspase-8. Caspase-1 drives rapid lysis of cells by pyroptosis and maturation of interleukin (IL)-1ß and IL-18. In caspase-1-deficient cells, inflammasome formation still leads to caspase-3 activation and slower apoptotic death, dependent on caspase-8 as an apical caspase. A role for caspase-8 directly upstream of caspase-1 has also been suggested, but here we show that caspase-8-deficient macrophages have no defect in AIM2 inflammasome-mediated caspase-1 activation, pyroptosis, and IL-1ß cleavage. In investigating the inflammasome-induced apoptotic pathway, we previously demonstrated that activated caspase-8 is essential for caspase-3 cleavage and apoptosis in caspase-1-deficient cells. However, here we found that AIM2 inflammasome-initiated caspase-3 cleavage was maintained in Ripk3-/-Casp8-/- macrophages. Gene knockdown showed that caspase-1 was required for the caspase-3 cleavage. Thus inflammasomes activate a network of caspases that can promote both pyroptotic and apoptotic cell death. In cells where rapid pyroptosis is blocked, delayed inflammasome-dependent cell death could still occur due to both caspase-1- and caspase-8-dependent apoptosis. Initiation of redundant cell death pathways is likely to be a strategy for coping with pathogen interference in death processes.


Assuntos
Caspase 1/imunologia , Caspase 3/imunologia , Caspase 8/imunologia , Proteínas de Ligação a DNA/imunologia , Inflamassomos/imunologia , Animais , Apoptose , Caspase 8/genética , Deleção de Genes , Camundongos Endogâmicos C57BL , Piroptose
4.
Methods Mol Biol ; 1390: 93-106, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26803624

RESUMO

Cytosolic DNA can indicate infection and induces type I interferon (IFN) and AIM2 inflammasome responses. Characterization of these responses has required introduction of DNA into the cytosol of macrophages by either chemical transfection or electroporation, each of which has advantages in different applications. We describe here optimized procedures for both electroporation and chemical transfection, including the centrifugation of chemical transfection reagent onto cells, which greatly increases the speed and strength of responses. Appropriate choice of DNA and use of these methods allow study of either the cytosolic DNA responses in isolation or the simultaneous stimulation of cytosolic receptors and the CpG DNA receptor toll-like receptor 9 (TLR9) in the endosomes.


Assuntos
DNA/genética , Eletroporação , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Bovinos , Sobrevivência Celular , DNA/metabolismo , Ensaio de Imunoadsorção Enzimática , Citometria de Fluxo , Macrófagos/metabolismo
5.
Dev Comp Immunol ; 59: 145-52, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26828392

RESUMO

Responses to cytosolic DNA can protect against both infectious organisms and the mutagenic effect of DNA integration. Recognition of invading DNA is likely to be fundamental to eukaryotic cellular life, but has been described only in mammals. Introduction of DNA into chicken macrophages induced type I interferon mRNA via a pathway conserved with mammals, requiring the receptor cGAS and the signalling protein STING. A second pathway of cytosolic DNA recognition in mammalian macrophages, initiated by absent in melanoma 2 (AIM2), results in rapid inflammasome-mediated pyroptotic cell death. AIM2 is restricted to mammals. Nevertheless, chicken macrophages underwent lytic cell death within 15 min of DNA transfection. The mouse AIM2-mediated response requires double stranded DNA, but chicken cell death was maintained with denatured DNA. This appears to be a novel form of rapid necrotic cell death, which we propose is an ancient response rendered redundant in mammalian macrophages by the appearance of the AIM2 inflammasome. The retention of these cytosolic DNA responses through evolution, with both conserved and non-conserved mechanisms, suggests a fundamental importance in cellular defence.


Assuntos
Morte Celular/imunologia , Galinhas/imunologia , Citosol/metabolismo , DNA/farmacologia , Imunidade Inata/imunologia , Interferon beta/imunologia , Animais , Células Cultivadas , DNA/genética , Proteínas de Ligação a DNA/metabolismo , Inflamassomos/imunologia , Interferon beta/genética , Interferon beta/metabolismo , RNA Mensageiro/biossíntese , Transdução de Sinais/imunologia
6.
J Innate Immun ; 7(2): 212-22, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25472853

RESUMO

Defence against invading DNA occurs in both mammals and bacteria. Recognition of stray DNA can initiate responses to infection, but may also protect against potentially mutagenic integration of transposons or retrotransposons into the genome. Double-stranded DNA detected in the cytosol of mammalian macrophages can elicit inflammatory cytokines and cell death following assembly of the AIM2 inflammasome. Amongst eukaryotes, responses to cytosolic DNA have so far only been detected in mammals, and AIM2 is mammalian restricted. In protecting genome integrity, we reasoned that pathways recognising invading DNA should be fundamental to cellular life, and that cell death would be an appropriate response to an overwhelming foreign DNA burden. We found that Drosophila S2 cells were killed by transfection of DNA from a range of natural sources. Unlike with mammalian cells, responses were not prevented by DNA denaturation. There was an element of sequence specificity, as synthetic single-stranded homopolymers were not toxic, whilst mixed-base synthetic DNA caused significant cell death. Death occurred with rapid loss of membrane integrity, and without the characteristic features of apoptosis. We have defined a novel defence against invading DNA in Drosophila. An active necrotic pathway has not previously been described in insects.


Assuntos
Membrana Celular/metabolismo , Citosol/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Necrose , Animais , Apoptose , Linhagem Celular , Permeabilidade da Membrana Celular , Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Drosophila , Estrutura Molecular , Transdução de Sinais , Especificidade da Espécie , Integração Viral
7.
Immunol Lett ; 134(2): 174-82, 2011 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-20933011

RESUMO

FCRL6 receptor is a more recently identified representative of the FCRL family. We generated a panel of mouse mAbs to baculovirus-derived recombinant FCRL6 protein. The clone 7B2 was found to specifically recognize a 63kDa protein expressed preferentially on the surface of CD8 T and CD56 NK cells in human peripheral blood and spleen. The clone 7B2 reacts with FCRL6 in Western blotting, FACS, and immunohistochemistry. In the T cell lineage, FCRL6 functions in antigen-experienced cells. Mitogenic stimulation of PB leukocytes in vitro resulted in an abrogation of the FCRL6 gene expression. We found a significant decrease in the FCRL6 gene expression in peripheral T cells of patients with certain autoimmune and blood diseases, and its upregulation at the late stages of HIV infection. Study of the FCRL6 association with signaling molecules showed its ability to recruit SHP-1, SHP-2, SHIP-1, and SHIP-2 phosphatases, and also adaptor protein Grb2 through phosphorylated cytoplasmic tyrosines. The current results demonstrate inhibitory potential of FCRL6 and suggest its possible involvement in modulation of CTL effector functions in various immune disorders.


Assuntos
Proteínas de Transporte/imunologia , Regulação da Expressão Gênica , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/imunologia , Processamento Alternativo , Sequência de Aminoácidos , Doenças Autoimunes/imunologia , Células Sanguíneas/citologia , Linfócitos T CD8-Positivos/imunologia , Doenças Hematológicas/imunologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/imunologia , Células Matadoras Naturais/imunologia , Dados de Sequência Molecular , RNA Mensageiro/imunologia , Alinhamento de Sequência , Baço/citologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa