Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
J Environ Manage ; 351: 119836, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141345

RESUMO

The present study investigated the combined production of reclaimed water for reuse purposes and polyhydroxyalkanoates (PHA) from an agro-food industrial wastewater. A pilot plant implementing a two-stage process for PHA production was studied. It consisted of a mainstream sequencing batch membrane bioreactor (SBMBR) in which selection of PHA-accumulating organisms and wastewater treatment were carried out in, and a side-stream fed-batch reactor (FBR) where the excess sludge from the SBMBR was used for PHA accumulation. The performance of the SBMBR was compared with that of a conventional sequencing batch reactor (SBR) treating the same wastewater under different food to microorganisms' ratios (F/M) ranging between 0.125 and 0.650 kgCOD kgTSS-3 d-1. The SBMBR enabled to obtain very high-quality effluent in compliance with the relevant national (Italy) and European regulations (Italian DM 185/03 and EU, 2020/741) in the field of wastewater reclamation, whereas the performances in the SBR collapsed at F/M higher than 0.50 kgCOD kgTSS-1d-1. A maximum intracellular storage of 45% (w/w) and a production yield of 0.63 gPHA L-1h-1 were achieved when the SBMBR system was operated with a F/M ratio close to 0.50 kgCOD kgTSS-1d-1. This resulted approximately 35% higher than those observed in the SBR, since the ultrafiltration membrane avoided the washout of dispersed and filamentous bacteria capable of storing PHA. Furthermore, while maximizing PHA productivity in conventional SBR systems led to process dysfunctions, in the SBMBR system it helped mitigate these issues by reducing membrane fouling behaviour. The results of this study supported the possibility to achieve combined recovery of reclaimed water and high-value added bioproducts using membrane technology, leading the way for agro-food industrial wastewater valorization in the frame of a circular economy model.


Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Reatores Biológicos/microbiologia , Esgotos , Bactérias
2.
J Environ Manage ; 321: 115924, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36104880

RESUMO

Citrus wastewaters (CWWs) are by-products of the citrus fruit transformation process. Currently, more than 700 million of m³ of CWWs per year are produced worldwide. Until nowadays, the management of CWWs is based on a take-make-use-dispose model. Indeed, after being produced within a citrus processing industry, CWWs are subjected to treatment and then discharged into the environment. Now, the European Union is pushing towards a take-make-use-reuse management model, which suggests to provide for the minimization of residual pollutants simultaneously with their exploitation through a biorefinery concept. Indeed, the recovery of energy nutrients and other value-added products held by CWWs may promote environmental sustainability and close the nutrient cycles in line with the circular bio-economy perspective. Unfortunately, knowledge about the benefits and disadvantages of available technologies for the management and valorisation of CWWs are very fragmentary, thus not providing to the scientific community and stakeholders an appropriate approach. Moreover, available studies focus on a specific treatment/valorisation pathway of CWWs and an overall vision is still missing. This review aims to provide an integrated approach for the sustainable management of CWWs to be proposed to company managers and other stakeholders within the legislative boundaries and in line with the circular bio-economy perspective. To this aim, firstly, a concise analysis of citrus wastewater characteristics and the main current regulations on CWWs are reported and discussed. Then, the main technologies with a general comparison of their pros and cons, and alternative pathways for CWWs utilization are presented and discussed. Finally, a focus was paid to the economic feasibility of the solutions proposed to date relating to the recovery of the CWWs for the production of both value-added compounds and agricultural reuse. Based on literature analysis an integrated approach for a sustainable CWWs management is proposed. Such an approach suggests that after chemicals recovery by biorefinery, wastewaters should be directly used for crop irrigation if allowed by regulations or addressed to treatment plant. The latter way should be preferred when CWWs cannot be directly applied to soil due to lack of concomitance between CWWs production and crop needs. In such a way, treated wastewater should be reused after tertiary treatments for crop irrigation, whereas produced sludges should be undergone to dewatering treatment before being reused as organic amendment to improve soil fertility. Finally, this review invite European institutions and each Member State to promote common and specific legislations to overcome the fragmentation of the regulatory framework regarding CWWs reuse.


Assuntos
Citrus , Águas Residuárias , Agricultura , Solo
3.
J Environ Manage ; 259: 109826, 2020 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-32072954

RESUMO

The integration of one anaerobic reactor in the mainstream (AMSR) of a pre-denitritication-MBR was evaluated with the aim to achieve simultaneous sludge minimization and phosphorous removal. The excess sludge production was reduced by 64% when the AMSR was operated under 8 h of hydraulic retention time (HRT). The highest nutrients removal performances referred to organic carbon (98%), nitrogen (90%) and phosphorous (97%) were obtained under 8 h of HRT. In contrast, prolonged anaerobic-endogenous conditions were found to be detrimental for all nutrients removal performances. Similarly, the lowest membrane fouling tendency (FR = 0.65∙1011 m-1 d-1) was achieved under 8 h of HRT, whereas it significantly increased under higher HRT. The highest polyphosphate accumulating organisms kinetics were achieved under HRT of 8 h, showing very high exogenous P-release (46.67 mgPO4-P gVSS-1 h-1) and P-uptake rates (48.6 mgPO4-P gVSS-1 h-1), as well as a not negligible P-release rate under endogenous conditions at low COD/P ratio (≈1).


Assuntos
Reatores Biológicos , Esgotos , Membranas Artificiais , Nitrogênio , Fósforo , Eliminação de Resíduos Líquidos
4.
J Environ Manage ; 208: 142-148, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29257990

RESUMO

Autochthonous halophilic biomass was cultivated in a sequencing batch reactor (SBR) aimed at analyzing the potential use of autochthonous halophilic activated sludge in treating saline industrial wastewater. Despite the high salt concentration (30 g NaCl L-1), biological oxygen demand (BOD) and total suspended solids (TSS), removal efficiencies were higher than 90%. More than 95% of the nitrogen was removed via a shortcut nitrification-denitrification process. Both the autotrophic and heterotrophic biomass samples exhibited high biological activity. The use of autochthonous halophilic biomass led to high-quality effluent and helped to manage the issues related to nitrogen removal in saline wastewater treatment.


Assuntos
Desnitrificação , Nitrificação , Águas Residuárias , Biomassa , Reatores Biológicos , Nitrogênio , Esgotos , Eliminação de Resíduos Líquidos
5.
J Environ Manage ; 214: 23-35, 2018 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-29518593

RESUMO

In the present paper, the feasibility of citrus wastewater treatment with aerobic granular sludge sequencing batch reactors (AGSBR) was investigated. Two AGSBRs (named R1 and R2, respectively) were operated for 90 days under different organic loading rates (OLR) and pH in two experimental periods. The OLR ranged approximately between 3.0 kg TCOD m-3d-1 and 7 kg TCOD m-3d-1 during Period I, whereas between 7 kg TCOD m-3d-1 and 15 kg TCOD m-3d-1 during Period II. pH was maintained at 7.0 and 5.5 in R1 and R2, respectively. The results revealed that under high OLR and unbalanced feast/famine regime (Period I), the development of fast-growing microorganisms (fungi and filamentous bacteria) was favoured in both reactors, resulting in granular sludge instability. An extended famine phase and a proper balancing between feast and famine periods (Period II) were favourable for the development of bacteria with low growth rates (0.05 d-1) thus enhancing the granules stability. To the benefit of granular sludge stability and effluent quality, the length of the feast period should not exceed 25% of cycle length. Moreover, under OLR lower than 7 kg TCOD m-3d-1 the removal efficiency of total chemical oxygen demand (TCOD) was approximately 90% in R1 and R2 and no side effects on the organic carbon removal performance related to the pH were observed. In contrast, at higher OLR a significant decrease in the removal efficiency (from 90% to less than 75%) was observed in R2. Results revealed also that under low pH, hydrolysis of proteins occurred and a decrease in the biological kinetic rates proportionally to the applied OLR was observed.


Assuntos
Citrus , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Concentração de Íons de Hidrogênio , Cinética , Esgotos , Águas Residuárias
6.
J Environ Manage ; 183(Pt 3): 541-550, 2016 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-27623364

RESUMO

This work aims to investigate the stability of aerobic granular sludge in the long term, focusing on the clogging of the granular sludge porosity exerted by the extracellular polymeric substances (EPSs). The effects of different cycle lengths (short and long-term cycle) on the granular sludge stability were investigated. Results obtained outlined that during the short duration cycle, the formation and breakage of the aerobic granules were continuously observed. During this period, the excess of EPS production contributed to the clogging of the granules porosity, causing their breakage in the long run. During the long-duration cycle, the extended famine period entailed a greater EPSs consumption by bacteria, thus limiting the clogging of the porosity, and allowed obtaining stable aerobic granules. Reported results demonstrated that an excess in EPSs content could be detrimental to the stability of aerobic granular sludge in the long-term.


Assuntos
Bactérias/metabolismo , Reatores Biológicos/microbiologia , Esgotos/microbiologia , Purificação da Água/métodos , Aerobiose , Biomassa , Polímeros , Porosidade
7.
Water Sci Technol ; 71(2): 252-8, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25633949

RESUMO

Three Sicilian wastewater treatment plants were monitored to assess the occurrence and the behaviour of radionuclides. Two sampling campaigns (screening and long-term) were carried out during which liquid and solid samples have been analysed. It was found that ¹³¹I mostly occurred in the samples analysed during the screening campaign (43% of the analysed samples contained ¹³¹I). High ¹³¹I specific activity was found in the mixed liquor, recycled sludge and dehydrated sludge samples. This finding was mainly due to the tendency of (131)I to be associated with solid particles. During the long-term sampling campaign an influence of the sludge retention time (SRT) on the ¹³¹I behaviour was found. Increasing the SRT and consequently decreasing the fraction of active organic biomass inside the system, the specific activity of ¹³¹I decreases.


Assuntos
Radioisótopos/análise , Águas Residuárias/análise , Poluentes Radioativos da Água/análise , Purificação da Água/instrumentação , Biomassa , Monitoramento Ambiental , Itália
8.
Chemosphere ; 355: 141768, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38537712

RESUMO

The present study has focused on the mainstream integration of polyhydroxyalkanoate (PHA) production with industrial wastewater treatment by exploiting three different technologies all operating in sequencing batch reactors (SBR): conventional activated sludge (AS-SBR), membrane bioreactor (AS-MBR) and aerobic granular sludge (AGS). A full aerobic feast/famine strategy was adopted to obtain enrichment of biomass with PHA-storing bacteria. All the systems were operated at different organic loading (OLR) rate equal to 1-2-3 kgCOD/m3∙d in three respective experimental periods. The AS-MBR showed the better and stable carbon removal performance, whereas the effluent quality of the AS-SBR and AGS deteriorated at high OLR. Biomass enrichment with PHA-storing bacteria was successfully obtained in all the systems. The AS-MBR improved the PHA productivity with increasing OLR (max 35% w/w), whereas the AS-SBR reduced the PHA content (max 20% w/w) above an OLR threshold of 2 kgCOD/m3∙d. In contrast, in the AGS the increase of OLR resulted in a significant decrease in PHA productivity (max 14% w/w) and a concomitant increase of extracellular polymers (EPS) production (max 75% w/w). Results demonstrated that organic carbon was mainly driven towards the intracellular storage pathway in the AS-SBR (max yield 51%) and MBR (max yield 61%), whereas additional stressors in AGS (e.g., hydraulic selection pressure, shear forces) induced bacteria to channel the COD into extracellular storage compounds (max yield 50%) necessary to maintain the granule's structure. The results of the present study indicated that full-aerobic feast/famine strategy was more suitable for flocculent sludge-based technologies, although biofilm-like systems could open new scenarios for other biopolymers recovery (e.g., EPS). Moreover, the AS-MBR resulted the most suitable technology for the integration of PHA production in a mainstream industrial wastewater treatment plant, considering the greater process stability and the potential reclamation of the treated wastewater.


Assuntos
Poli-Hidroxialcanoatos , Águas Residuárias , Esgotos/química , Reatores Biológicos/microbiologia , Bactérias/metabolismo , Carbono/metabolismo , Eliminação de Resíduos Líquidos/métodos
9.
Bioprocess Biosyst Eng ; 36(4): 499-514, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23010720

RESUMO

Membrane bioreactors (MBR) are being increasingly used for wastewater treatment. Mathematical modeling of MBR systems plays a key role in order to better explain their characteristics. Several MBR models have been presented in the literature focusing on different aspects: biological models, models which include soluble microbial products (SMP), physical models able to describe the membrane fouling and integrated models which couple the SMP models with the physical models. However, only a few integrated models have been developed which take into account the relationships between membrane fouling and biological processes. With respect to biological phosphorus removal in MBR systems, due to the complexity of the process, practical use of the models is still limited. There is a vast knowledge (and consequently vast amount of data) on nutrient removal for conventional-activated sludge systems but only limited information on phosphorus removal for MBRs. Calibration of these complex integrated models still remains the main bottleneck to their employment. The paper presents an integrated mathematical model able to simultaneously describe biological phosphorus removal, SMP formation/degradation and physical processes which also include the removal of organic matter. The model has been calibrated with data collected in a UCT-MBR pilot plant, located at the Palermo wastewater treatment plant, applying a modified version of a recently developed calibration protocol. The calibrated model provides acceptable correspondence with experimental data and can be considered a useful tool for MBR design and operation.


Assuntos
Reatores Biológicos , Nitrogênio/isolamento & purificação , Fósforo/isolamento & purificação , Eliminação de Resíduos Líquidos/métodos , Bioengenharia , Análise da Demanda Biológica de Oxigênio , Membranas Artificiais , Modelos Biológicos , Projetos Piloto , Esgotos , Águas Residuárias/química
10.
Sci Total Environ ; 901: 166301, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37586520

RESUMO

Green Walls represent a sustainable solution to mitigate the effects due to climate change and urbanization. However, although they have been widely investigated in different fields of science, studies on the potential of these systems to manage urban stormwater are still few. Moreover, even if these systems provide multiple benefits, as other nature-based solutions, they leach nutrients due to growing media, decomposed vegetation, and the possibility of fertilizer use. In this regard, several studies have evaluated the nutrient concentrations in the runoff from green roofs, while studies that have analyzed the nutrient-leaching behavior of green walls are still limited. To bridge these scientific gaps, this study presents experimental findings on the hydrological efficiency and nutrient-leaching behavior of an innovative modular living wall system. Some rainfall-runoff tests were carried out to assess the hydrological response of a new green wall system in retaining stormwater. To evaluate the concentration of the nutrients, the collected outflow was analyzed by spectrophotometer UV-visible. The findings show that the developed green wall panel presents good retention capacity by considering different simulated rainfalls and varying the initial soil moisture conditions. The results in terms of nutrient concentrations highlight that the vegetation life cycle and the fertilizer uses affect the quality of the water released from the green wall panel. The concentration of the analyzed nutrients is influenced by the simulated rainfall's hydrological characteristics and the days between the planting phase and the test. However, the overall results show that the concentrations of each analyzed nutrient are low, except after the fertilizer use, highlighting that the choice of vegetation that does not need external nutrients should be preferred during the design of a green wall.

11.
Chemosphere ; 312(Pt 1): 137090, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36334748

RESUMO

In the present research, insights about the mechanisms of excess sludge minimization occurring in an oxic-settling-anaerobic (OSA) were provided. The investigation involved two systems operating in parallel. In particular, a conventional activated sludge (CAS) system as control and a system implementing the OSA process both having a pre-denitrification scheme were considered. Five periods (P1-P5) were studied, during which several operating conditions and configurations were tested. Specifically, the hydraulic retention time (HRT) in the anaerobic reactor of the OSA system (P1 8 h, P2-P3 12 h, P4 8 h, P5 12 h) and the return sludge from the anaerobic to the anoxic (scheme A) (P1-P2) or aerobic (scheme B) mainstream reactors (P3-P5) were investigated. The results highlighted that the excess sludge production in the OSA was lower in all the configurations (12-41%). In more detail, the observed yield (Yobs) was reduced from 0.50-0.89 gTSS gCOD-1 (control) to 0.22 -0.34 gTSS gCOD-1 in the OSA process. The highest excess sludge reduction (40%) was achieved when the OSA was operated according to scheme B and HRT of 12 h in the anaerobic reactor (P3). Generally, scheme A enabled the establishment of cell lysis and extracellular polymeric substances (EPS) destructuration, leading to a worsening of process performances when high anaerobic HRT (>8 h) was imposed. In contrast, scheme B enabled the establishment of maintenance metabolism in addition to the uncoupling metabolism, while cell lysis and EPS destruction were minimized. This allowed obtaining higher sludge reduction yield without compromising the effluent quality.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Reatores Biológicos , Matriz Extracelular de Substâncias Poliméricas
12.
Membranes (Basel) ; 12(4)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35448342

RESUMO

In this study, the presence of microplastics in the sludge of three wastewater treatment plants (WWTPs) was examined. The investigated WWTPs operated based on a conventional activated sludge (CAS) process, with (W1) or without (W2) primary clarification, and a membrane bioreactor process (MBR) (W3). The microplastics (MPs) concentration in the samples of W3 was approximately 81.1 ± 4.2 × 103 particles/kg dry sludge, whereas MPs concentrations in W1 and W2 were 46.0 ± 14.8 × 103 particles/kg dry sludge and 36.0 ± 5.2 × 103 particles/kg dry sludge, respectively. Moreover, MPs mainly consisted of fragments (66-68%) in the CAS plants, whereas the fractions of MPs shapes in the MBR sludge were more evenly distributed, although fiber (47%) was the most abundant fraction. Furthermore, samples from the MBR showed a greater diversity in MPs composition. Indeed, all the main polyesters (i.e., textile fibers and polyethylene terephthalate), polyolefins (i.e., polyethylene and polypropylene) and rubber (i.e., polybutadiene) were observed, whereas only polybutadiene, cellulose acetate and polyester were detected in the CAS plants. These findings confirmed that MPs from wastewater are transferred and concentrated in the waste sludge. This is a critical finding since sludge disposal could become a new pathway for microplastic release into the environment and because MPs might affect the fouling behavior of the membrane.

13.
Membranes (Basel) ; 12(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35877906

RESUMO

Fouling is considered one of the main drawbacks of membrane bioreactor (MBR) technology. Among the main fouling agents, extracellular polymeric substances (EPS) are considered one of the most impactful since they cause the decrease of sludge filterability and decline of membrane flux in the long term. The present study investigated a biological strategy to reduce the membrane-fouling tendency in MBR systems. This consisted of seeding the reactor with activated sludge enriched in microorganisms with polyhydroxyalkanoate (PHA) storage ability and by imposing proper operating conditions to drive the carbon toward intracellular (PHA) rather than extracellular (EPS) accumulation. For that purpose, an MBR lab-scale plant was operated for 175 days, divided into four periods (1-4) according to different food to microorganisms' ratios (F/M) (0.80 kg COD kg TSS-1 d-1 (Period 1), 0.13 kg COD kg TSS-1 d-1 (Period 2), 0.28 kg COD kg TSS-1 d-1 (Period 3), and 0.38 kg COD kg TSS-1 d-1 (Period 4)). The application of the feast/famine strategy favored the accumulation of intracellular polymers by bacteria. The increase of the PHA accumulation inside the cells corresponded to the decrease of EPS and an F/M of 0.40-0.50 kg COD kg TSS-1 d-1 was found as optimum to maximize the PHA production, while minimizing EPS. The lowest EPS content in the sludge (18% of total suspended solids) that corresponded to the maximum content of PHA (9.3%) was found in Period 4 and determined significant mitigation of the fouling rate, whose value was close to 0.10 × 1011 m-1 h-1. Thus, by imposing proper operating conditions, it was possible to drive the organic matter toward PHA accumulation. Moreover, a lower EPS content corresponded to a decrease in the irreversible fouling mechanism, which would imply a lower frequency of the extraordinary cleaning operations. This study highlighted the possibility of obtaining a double benefit by applying an MBR system in the frame of wastewater valorization: minimizing the fouling tendency of the membrane and recovery precursors of bioplastics from wastewater in line with the circular economy model.

14.
Sci Total Environ ; 806(Pt 3): 150708, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34600982

RESUMO

Contaminated marine sediments represent a critical threat towards human health and ecosystems, since they constitute a potential reservoir of toxic compounds release. In the present study, a bioslurry reactor was studied for the treatment of real marine sediments contaminated by petroleum hydrocarbons. The experimental campaign was divided in two periods: in the first period, microcosm trials were carried out to achieve useful indicators for biological hydrocarbon removal from sediments. The microcosm trials highlighted that the inoculum of halotolerant allochthonous bacteria provided the highest performance followed by autochthonous biomass. Based on the achieved results, in the second experimental period a bioslurry reactor was started up, based on a semisolid stirred tank reactor (STR) operated in batch mode. The process performances have been evaluated in terms of total petroleum hydrocarbon (TPH) removal, coupled with the characterization of microbial community through a Next Generation Sequencing (NGS) and phytotoxicity tests through the Germination Index (GI) with Lepidium Sativum seeds. The achieved results showed good hydrocarbons removal, equal to 40%, with a maximum removal rate of 220 mgTPH kg-1 d-1, but highlighting that high contaminant concentrations might affect negatively the overall removal performance. In general, the observed results were encouraging towards the feasibility of biological treatment of marine sediments contaminated by hydrocarbons. The microbiological analysis allowed the identification of taxa most involved in the degradation of TPH, highlighting after the treatment a shift in the microbial community from that of the raw sediment.


Assuntos
Ecossistema , Petróleo , Biodegradação Ambiental , Sedimentos Geológicos , Humanos , Hidrocarbonetos
15.
Artigo em Inglês | MEDLINE | ID: mdl-34948655

RESUMO

The aim of this study was to evaluate the effect of the inoculum to substrate ratio (ISR) and the mixture ratio between organic fraction of municipal solid waste (OFMSW) and sewage sludge (SS) on the methane production potential achievable from anaerobic co-digestion (AcoD). Biochemical Methane Potential (BMP) assays at mesophilic temperature were used to determine the best AcoD configuration for maximizing methane yield and production rate, as well as to address possible synergistic effects. The maximum methane yield was observed at ISR of 1 and 60% OFMSW: 40% SS as co-digestion mixture, whereas the highest methane production rate was achieved at ISR of 2 with the same mixture ratio (207 mL/gVS/d). Synergistic effects were highlighted in the mixtures having OFMSW below 60%, determining an increase of approximately 40% in methane production than the OFMSW and SS digestion as a sole substrate. The experimental data demonstrated that co-digestion of OFMSW and SS resulted in an increase in the productivity of methane than anaerobic digestion using the sole substrates, producing higher yields or production rates while depending on the ISR and the mixture ratio.


Assuntos
Eliminação de Resíduos , Resíduos Sólidos , Anaerobiose , Reatores Biológicos , Digestão , Esgotos , Resíduos Sólidos/análise
16.
Water Sci Technol ; 62(10): 2301-12, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21076216

RESUMO

Urban water quality management often requires use of numerical models allowing the evaluation of the cause-effect relationship between the input(s) (i.e. rainfall, pollutant concentrations on catchment surface and in sewer system) and the resulting water quality response. The conventional approach to the system (i.e. sewer system, wastewater treatment plant and receiving water body), considering each component separately, does not enable optimisation of the whole system. However, recent gains in understanding and modelling make it possible to represent the system as a whole and optimise its overall performance. Indeed, integrated urban drainage modelling is of growing interest for tools to cope with Water Framework Directive requirements. Two different approaches can be employed for modelling the whole urban drainage system: detailed and simplified. Each has its advantages and disadvantages. Specifically, detailed approaches can offer a higher level of reliability in the model results, but can be very time consuming from the computational point of view. Simplified approaches are faster but may lead to greater model uncertainty due to an over-simplification. To gain insight into the above problem, two different modelling approaches have been compared with respect to their uncertainty. The first urban drainage integrated model approach uses the Saint-Venant equations and the 1D advection-dispersion equations, for the quantity and for the quality aspects, respectively. The second model approach consists of the simplified reservoir model. The analysis used a parsimonious bespoke model developed in previous studies. For the uncertainty analysis, the Generalised Likelihood Uncertainty Estimation (GLUE) procedure was used. Model reliability was evaluated on the basis of capacity of globally limiting the uncertainty. Both models have a good capability to fit the experimental data, suggesting that all adopted approaches are equivalent both for quantity and quality. The detailed model approach is more robust and presents less uncertainty in terms of uncertainty bands. On the other hand, the simplified river water quality model approach shows higher uncertainty and may be unsuitable for receiving water body quality assessment.


Assuntos
Modelos Teóricos , Abastecimento de Água/normas , Controle de Qualidade , Urbanização
17.
Water Sci Technol ; 62(2): 288-99, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20651432

RESUMO

Numerical modelling can be a useful tool to assess a receiving water body's quality state. Indeed, the use of mathematical models in river water quality management has become a common practice to show the cause-effect relationship between emissions and water body quality and to design as well as assess the effectiveness of mitigation measures. In the present study, a hydrodynamic river water quality model is presented. The model consists of a quantity and a quality sub-model. The quantity sub-model is based on the Saint Venant equations. The solution of the Saint Venant equations is obtained by means of an explicit scheme based on space-time conservation. The method considers the unification of space and time and the enforcement of flux conservation in both space and time. On the other hand, the quality sub-model is based on the advection dispersion equation. Particularly, the principle of upstream weighting applied to finite difference methods is employed. This method enable us to reduce the numerical dispersion avoiding oscillation phenomena. The optimal weighting coefficient was calculated on the basis of the mesh Peclet number. Regarding the quality processes, the model takes into account the main physical/chemical processes; these are degradation of dissolved carbonaceous substances, ammonium oxidation, algal uptake and denitrification, dissolved oxygen balance, including depletion by degradation processes and supply by physical reaeration and photosynthetic production. To properly simulate the river water quality, four state variables were considered: DO, BOD, NH4, and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project for which quantity and quality data were gathered. A sensitivity analysis of the model output compared to the model input or parameters was carried out.


Assuntos
Monitoramento Ambiental/métodos , Modelos Teóricos , Rios/química , Poluentes Químicos da Água/química , Itália , Método de Monte Carlo
18.
Water Sci Technol ; 61(3): 607-18, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20150696

RESUMO

Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.


Assuntos
Poluentes Ambientais/análise , Água Doce/análise , Rios , Algoritmos , Itália , Cinética , Modelos Teóricos , Nitratos/análise , Oxigênio/análise , Fotossíntese , Compostos de Amônio Quaternário/análise , Esgotos/análise , Abastecimento de Água/análise , Abastecimento de Água/normas
19.
Water Sci Technol ; 61(2): 521-36, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20107280

RESUMO

In the past three decades, scientific research has focused on the preservation of water resources, and in particular, on the polluting impact of urban areas on natural water bodies. One approach to this research has involved the development of tools to describe the phenomena that take place on the urban catchment during both wet and dry periods. Research has demonstrated the importance of the integrated analysis of all the transformation phases that characterise the delivery and treatment of urban water pollutants from source to outfall. With this aim, numerous integrated urban drainage models have been developed to analyse the fate of pollution from urban catchments to the final receiving waters, simulating several physical and chemical processes. Such modelling approaches require calibration, and for this reason, researchers have tried to address two opposing needs: the need for reliable representation of complex systems, and the need to employ parsimonious approaches to cope with the usually insufficient, especially for urban sources, water quality data. The present paper discusses the application of a be-spoke model to a complex integrated catchment: the Nocella basin (Italy). This system is characterised by two main urban areas served by two wastewater treatment plants, and has a small river as the receiving water body. The paper describes the monitoring approach that was used for model calibration, presents some interesting considerations about the monitoring needs for integrated modelling applications, and provides initial results useful for identifying the most relevant polluting sources.


Assuntos
Cidades , Abastecimento de Água/normas , Conservação dos Recursos Naturais , Drenagem Sanitária , Itália , Modelos Teóricos , Fatores de Tempo , Movimentos da Água , Poluição da Água
20.
Water Sci Technol ; 61(9): 2381-90, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20418636

RESUMO

The objective of this paper is the definition of a methodology to evaluate the impact of the temporal resolution of rainfall measurements in urban drainage modelling applications. More specifically the effect of the temporal resolution on urban water quality modelling is detected analysing the uncertainty of the response of rainfall-runoff modelling. Analyses have been carried out using historical rainfall-discharge data collected for the Fossolo catchment (Bologna, Italy). According to the methodology, the historical rainfall data are taken as a reference, and resampled data have been obtained through a rescaling procedure with variable temporal windows. The shape comparison between 'true' and rescaled rainfall data has been carried out using a non-dimensional accuracy index. Monte Carlo simulations have been carried out applying a parsimonious urban water quality model, using the recorded data and the resampled events. The results of the simulations were used to derive the cumulative probabilities of quantity and quality model outputs (peak discharges, flow volume, peak concentrations and pollutant mass) conditioned on the observation according to the GLUE (Generalized Likelihood Uncertainty Estimation) methodology. The results showed that when coarser rainfall information is available, the model calibration process is still efficient even if modelling uncertainty progressively increases especially with regards to water quality aspects.


Assuntos
Modelos Teóricos , Chuva , Eliminação de Resíduos Líquidos , Abastecimento de Água/normas , Água/química , Cidades , Monitoramento Ambiental , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa