Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Blood ; 142(22): 1932-1934, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37704579

RESUMO

Splenic iron decreased whereas liver iron was stable during luspatercept therapy in some individuals with thalassemia. This suggests a reduction of ineffective erythropoiesis changes the organ distribution of iron and demonstrates that liver iron concentration alone may not accurately reflect total body iron content. This article describes data from subjects enrolled in BELIEVE (NCT02604433) and BEYOND (NCT03342404).


Assuntos
Ferro , Talassemia beta , Humanos , Receptores de Activinas Tipo II , Talassemia beta/tratamento farmacológico , Eritropoese , Fígado
2.
Lancet ; 402(10399): 373-385, 2023 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-37311468

RESUMO

BACKGROUND: Erythropoiesis-stimulating agents (ESAs) are the standard-of-care treatment for anaemia in most patients with lower-risk myelodysplastic syndromes but responses are limited and transient. Luspatercept promotes late-stage erythroid maturation and has shown durable clinical efficacy in patients with lower-risk myelodysplastic syndromes. In this study, we report the results of a prespecified interim analysis of luspatercept versus epoetin alfa for the treatment of anaemia due to lower-risk myelodysplastic syndromes in the phase 3 COMMANDS trial. METHODS: The phase 3, open-label, randomised controlled COMMANDS trial is being conducted at 142 sites in 26 countries. Eligible patients were aged 18 years or older, had a diagnosis of myelodysplastic syndromes of very low risk, low risk, or intermediate risk (per the Revised International Prognostic Scoring System), were ESA-naive, and required red blood cell transfusions (2-6 packed red blood cell units per 8 weeks for ≥8 weeks immediately before randomisation). Integrated response technology was used to randomly assign patients (1:1, block size 4) to luspatercept or epoetin alfa, stratified by baseline red blood cell transfusion burden (<4 units per 8 weeks vs ≥4 units per 8 weeks), endogenous serum erythropoietin concentration (≤200 U/L vs >200 to <500 U/L), and ring sideroblast status (positive vs negative). Luspatercept was administered subcutaneously once every 3 weeks starting at 1·0 mg/kg body weight with possible titration up to 1·75 mg/kg. Epoetin alfa was administered subcutaneously once a week starting at 450 IU/kg body weight with possible titration up to 1050 IU/kg (maximum permitted total dose of 80 000 IU). The primary endpoint was red blood cell transfusion independence for at least 12 weeks with a concurrent mean haemoglobin increase of at least 1·5 g/dL (weeks 1-24), assessed in the intention-to-treat population. Safety was assessed in patients who received at least one dose of study treatment. The COMMANDS trial was registered with ClinicalTrials.gov, NCT03682536 (active, not recruiting). FINDINGS: Between Jan 2, 2019 and Aug 31, 2022, 356 patients were randomly assigned to receive luspatercept (178 patients) or epoetin alfa (178 patients), comprising 198 (56%) men and 158 (44%) women (median age 74 years [IQR 69-80]). The interim efficacy analysis was done for 301 patients (147 in the luspatercept group and 154 in the epoetin alfa group) who completed 24 weeks of treatment or discontinued earlier. 86 (59%) of 147 patients in the luspatercept group and 48 (31%) of 154 patients in the epoetin alfa group reached the primary endpoint (common risk difference on response rate 26·6; 95% CI 15·8-37·4; p<0·0001). Median treatment exposure was longer for patients receiving luspatercept (42 weeks [IQR 20-73]) versus epoetin alfa (27 weeks [19-55]). The most frequently reported grade 3 or 4 treatment-emergent adverse events with luspatercept (≥3% patients) were hypertension, anaemia, dyspnoea, neutropenia, thrombocytopenia, pneumonia, COVID-19, myelodysplastic syndromes, and syncope; and with epoetin alfa were anaemia, pneumonia, neutropenia, hypertension, iron overload, COVID-19 pneumonia, and myelodysplastic syndromes. The most common suspected treatment-related adverse events in the luspatercept group (≥3% patients, with the most common event occurring in 5% patients) were fatigue, asthenia, nausea, dyspnoea, hypertension, and headache; and none (≥3% patients) in the epoetin alfa group. One death after diagnosis of acute myeloid leukaemia was considered to be related to luspatercept treatment (44 days on treatment). INTERPRETATION: In this interim analysis, luspatercept improved the rate at which red blood cell transfusion independence and increased haemoglobin were achieved compared with epoetin alfa in ESA-naive patients with lower-risk myelodysplastic syndromes. Long-term follow-up and additional data will be needed to confirm these results and further refine findings in other subgroups of patients with lower-risk myelodysplastic syndromes, including non-mutated SF3B1 or ring sideroblast-negative subgroups. FUNDING: Celgene and Acceleron Pharma.


Assuntos
Anemia , COVID-19 , Hematínicos , Hipertensão , Síndromes Mielodisplásicas , Neutropenia , Masculino , Humanos , Feminino , Idoso , Epoetina alfa/efeitos adversos , Hematínicos/efeitos adversos , Eritropoese , Anemia/tratamento farmacológico , Anemia/etiologia , Hipertensão/tratamento farmacológico , Síndromes Mielodisplásicas/complicações , Síndromes Mielodisplásicas/tratamento farmacológico , Síndromes Mielodisplásicas/induzido quimicamente , Hemoglobinas/uso terapêutico , Dispneia/tratamento farmacológico , Peso Corporal
3.
Am J Hematol ; 99(2): 182-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37782758

RESUMO

Luspatercept, a ligand-trapping fusion protein, binds select TGF-ß superfamily ligands implicated in thalassemic erythropoiesis, promoting late-stage erythroid maturation. Luspatercept reduced transfusion burden in the BELIEVE trial (NCT02604433) of 336 adults with transfusion-dependent thalassemia (TDT). Analysis of biomarkers in BELIEVE offers novel physiological and clinical insights into benefits offered by luspatercept. Transfusion iron loading rates decreased 20% by 1.4 g (~7 blood units; median iron loading rate difference: -0.05 ± 0.07 mg Fe/kg/day, p< .0001) and serum ferritin (s-ferritin) decreased 19.2% by 269.3 ± 963.7 µg/L (p < .0001), indicating reduced macrophage iron. However, liver iron content (LIC) did not decrease but showed statistically nonsignificant increases from 5.3 to 6.7 mg/g dw. Erythropoietin, growth differentiation factor 15, soluble transferrin receptor 1 (sTfR1), and reticulocytes rose by 93%, 59%, 66%, and 112%, respectively; accordingly, erythroferrone increased by 51% and hepcidin decreased by 53% (all p < .0001). Decreased transfusion with luspatercept in patients with TDT was associated with increased erythropoietic markers and decreasing hepcidin. Furthermore, s-ferritin reduction associated with increased erythroid iron incorporation (marked by sTfR1) allowed increased erythrocyte marrow output, consequently reducing transfusion needs and enhancing rerouting of hemolysis (heme) iron and non-transferrin-bound iron to the liver. LIC increased in patients with intact spleens, consistent with iron redistribution given the hepcidin reduction. Thus, erythropoietic and hepcidin changes with luspatercept in TDT lower transfusion dependency and may redistribute iron from macrophages to hepatocytes, necessitating the use of concomitant chelator cover for effective iron management.


Assuntos
Receptores de Activinas Tipo II , Fragmentos Fc das Imunoglobulinas , Ferro , Proteínas Recombinantes de Fusão , Talassemia , Adulto , Humanos , Hepcidinas , Eritropoese/fisiologia , Talassemia/complicações , Receptores da Transferrina , Ferritinas
4.
EMBO J ; 34(11): 1538-53, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25916830

RESUMO

Nutrient sensing pathways adjust metabolism and physiological functions in response to food intake. For example, sugar feeding promotes lipogenesis by activating glycolytic and lipogenic genes through the Mondo/ChREBP-Mlx transcription factor complex. Concomitantly, other metabolic routes are inhibited, but the mechanisms of transcriptional repression upon sugar sensing have remained elusive. Here, we characterize cabut (cbt), a transcription factor responsible for the repressive branch of the sugar sensing transcriptional network in Drosophila. We demonstrate that cbt is rapidly induced upon sugar feeding through direct regulation by Mondo-Mlx. We found that CBT represses several metabolic targets in response to sugar feeding, including both isoforms of phosphoenolpyruvate carboxykinase (pepck). Deregulation of pepck1 (CG17725) in mlx mutants underlies imbalance of glycerol and glucose metabolism as well as developmental lethality. Furthermore, we demonstrate that cbt provides a regulatory link between nutrient sensing and the circadian clock. Specifically, we show that a subset of genes regulated by the circadian clock are also targets of CBT. Moreover, perturbation of CBT levels leads to deregulation of the circadian transcriptome and circadian behavioral patterns.


Assuntos
Relógios Circadianos/fisiologia , Proteínas de Drosophila/metabolismo , Metabolismo Energético/fisiologia , Comportamento Alimentar/fisiologia , Glucose/metabolismo , Fatores de Transcrição/metabolismo , Transcriptoma/fisiologia , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Glucose/genética , Glicerol/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fatores de Transcrição/genética
5.
Mol Cell ; 31(1): 104-13, 2008 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-18614049

RESUMO

GAL genes and other activated yeast genes remain tethered to the nuclear periphery even after transcriptional shutoff. To identify factors that affect this tethering, we designed a plasmid-based visual screen. Although many factors affected GAL tethering during transcription, fewer specifically affected posttranscriptional tethering. Tw o of these, Rrp6p and Lrp1p, are nuclear exosome components known to contribute to RNA retention near transcription sites (dot RNA). Moreover, these exosome mutations lead to a substantial posttranscriptional increase in polyadenylated GAL1 3' ends. This accompanies a loss of unadenylated (pA-) GAL1 RNA and a loss of posttranscriptional gene-periphery tethering, as well as a decrease in dot RNA levels. This suggests that the exosome inhibits adenylation of some GAL1 transcripts, which results in the accumulation of pA- RNA adjacent to the GAL1 gene. We propose that this dot RNA, probably via RNP proteins, contributes to the physical tether linking the GAL1 gene to the nuclear periphery.


Assuntos
Núcleo Celular/genética , Galactoquinase/genética , Genes Fúngicos , Poliadenilação/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica , Sequência de Bases , Bioensaio , Exorribonucleases , Complexo Multienzimático de Ribonucleases do Exossomo , Galactoquinase/metabolismo , Regulação Fúngica da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Dados de Sequência Molecular , Mutação/genética , Plasmídeos/genética , Poli A/metabolismo , RNA Catalítico/metabolismo , RNA Fúngico/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato , Ativação Transcricional/genética
6.
Proc Natl Acad Sci U S A ; 110(4): E275-84, 2013 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-23297234

RESUMO

Rhythmic mRNA expression is a hallmark of circadian biology and has been described in numerous experimental systems including mammals. A small number of core clock gene mRNAs and a much larger number of output mRNAs are under circadian control. The rhythmic expression of core clock genes is regulated at the transcriptional level, and this regulation is important for the timekeeping mechanism. However, the relative contribution of transcriptional and post transcriptional regulation to global circadian mRNA oscillations is unknown. To address this issue in Drosophila, we isolated nascent RNA from adult fly heads collected at different time points and subjected it to high-throughput sequencing. mRNA was isolated and sequence din parallel. Some genes had cycling nascent RNAs with no cycling mRNA, caused,most likely, by light-mediated read-through transcription. Most genes with cycling mRNAs had significant nascent RNA cycling amplitudes, indicating a prominent role for circadian transcriptional regulation. However, a considerable fraction had higher mRNA amplitudes than nascent RNA amplitudes. The same comparison for core clock gene mRNAs gives rise to a qualitatively similar conclusion. The data therefore indicate a significant quantitative contribution of post transcriptional regulation to mRNA cycling.


Assuntos
Ritmo Circadiano/genética , Drosophila melanogaster/genética , Genes de Insetos , Animais , Ritmo Circadiano/fisiologia , Peptídeos e Proteínas de Sinalização do Ritmo Circadiano/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiologia , Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Mol Biol Cell ; 17(12): 5309-23, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17035634

RESUMO

The Ire1p transmembrane receptor kinase/endonuclease transduces the unfolded protein response (UPR) from the endoplasmic reticulum (ER) to the nucleus in Saccharomyces cerevisiae. In this study, we analyzed the capacity of a highly basic sequence in the linker region of Ire1p to function as a nuclear localization sequence (NLS) both in vivo and in vitro. This 18-residue sequence is capable of targeting green fluorescent protein to the nucleus of yeast cells in a process requiring proteins involved in the Ran GTPase cycle that facilitates nuclear import. Mutagenic analysis and importin binding studies demonstrate that the Ire1p linker region contains overlapping potential NLSs: at least one classical NLS (within sequences 642KKKRKR647 and/or 653KKGR656) that is recognized by yeast importin alpha (Kap60p) and a novel betaNLS (646KRGSRGGKKGRK657) that is recognized by several yeast importin beta homologues. Kinetic binding data suggest that binding to importin beta proteins would predominate in vivo. The UPR, and in particular ER stress-induced HAC1 mRNA splicing, is inhibited by point mutations in the Ire1p NLS that inhibit nuclear localization and also requires functional RanGAP and Ran GEF proteins. The NLS-dependent nuclear localization of Ire1p would thus seem to be central to its role in UPR signaling.


Assuntos
Glicoproteínas de Membrana/metabolismo , Sinais de Localização Nuclear/metabolismo , Dobramento de Proteína , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , beta Carioferinas/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Núcleo Celular/metabolismo , Sequência Consenso , Regulação Fúngica da Expressão Gênica , Membranas Intracelulares/metabolismo , Cinética , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Camundongos , Dados de Sequência Molecular , Sinais de Localização Nuclear/química , Mutação Puntual/genética , Ligação Proteica , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Estrutura Terciária de Proteína , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae/citologia , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteína ran de Ligação ao GTP/metabolismo
9.
Clin Cancer Res ; 20(22): 5745-5755, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25239608

RESUMO

PURPOSE: KIT is the major oncogenic driver of gastrointestinal stromal tumors (GIST). Imatinib, sunitinib, and regorafenib are approved therapies; however, efficacy is often limited by the acquisition of polyclonal secondary resistance mutations in KIT, with those located in the activation (A) loop (exons 17/18) being particularly problematic. Here, we explore the KIT-inhibitory activity of ponatinib in preclinical models and describe initial characterization of its activity in patients with GIST. EXPERIMENTAL DESIGN: The cellular and in vivo activities of ponatinib, imatinib, sunitinib, and regorafenib against mutant KIT were evaluated using an accelerated mutagenesis assay and a panel of engineered and GIST-derived cell lines. The ponatinib-KIT costructure was also determined. The clinical activity of ponatinib was examined in three patients with GIST previously treated with all three FDA-approved agents. RESULTS: In engineered and GIST-derived cell lines, ponatinib potently inhibited KIT exon 11 primary mutants and a range of secondary mutants, including those within the A-loop. Ponatinib also induced regression in engineered and GIST-derived tumor models containing these secondary mutations. In a mutagenesis screen, 40 nmol/L ponatinib was sufficient to suppress outgrowth of all secondary mutants except V654A, which was suppressed at 80 nmol/L. This inhibitory profile could be rationalized on the basis of structural analyses. Ponatinib (30 mg daily) displayed encouraging clinical activity in two of three patients with GIST. CONCLUSION: Ponatinib possesses potent activity against most major clinically relevant KIT mutants and has demonstrated preliminary evidence of activity in patients with refractory GIST. These data strongly support further evaluation of ponatinib in patients with GIST.


Assuntos
Antineoplásicos/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Tumores do Estroma Gastrointestinal/genética , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-kit/genética , Piridazinas/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Benzamidas/farmacologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Éxons , Feminino , Tumores do Estroma Gastrointestinal/diagnóstico , Tumores do Estroma Gastrointestinal/tratamento farmacológico , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mesilato de Imatinib , Imidazóis/química , Imidazóis/uso terapêutico , Indóis/farmacologia , Concentração Inibidora 50 , Modelos Moleculares , Conformação Molecular , Mutação , Recidiva Local de Neoplasia , Piperazinas/farmacologia , Ligação Proteica , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas c-kit/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-kit/química , Piridazinas/química , Piridazinas/uso terapêutico , Pirimidinas/farmacologia , Pirróis/farmacologia , Sunitinibe , Tomografia Computadorizada por Raios X , Carga Tumoral/efeitos dos fármacos , Carga Tumoral/genética , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cell Metab ; 16(5): 601-12, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23122660

RESUMO

We sequenced Drosophila head RNA to identify a small set of miRNAs that undergo robust circadian cycling. We concentrated on a cluster of six miRNAs, mir-959-964, all of which peak at about ZT12 or lights off. The cluster pri-miRNA is transcribed under bona fide circadian transcriptional control, and all six mature miRNAs have short half-lives, a requirement for cycling. A viable Gal4 knockin strain localizes prominent cluster miRNA expression to the adult head fat body. Analysis of cluster knockout and overexpression strains indicates that innate immunity, metabolism, and feeding behavior are under cluster miRNA regulation. Manipulation of food intake also affects the levels and timing of cluster miRNA transcription with no more than minor effects on the core circadian oscillator. These observations indicate a feedback circuit between feeding time and cluster miRNA expression function as well as a surprising role of posttranscriptional regulation in the circadian control of these phenotypes.


Assuntos
Drosophila melanogaster/metabolismo , MicroRNAs/metabolismo , Animais , Relógios Circadianos/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Ingestão de Alimentos , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Imunidade Inata , MicroRNAs/genética , Família Multigênica , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa