Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 256
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 181(4): 784-799.e19, 2020 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-32413299

RESUMO

Swelling of the brain or spinal cord (CNS edema) affects millions of people every year. All potential pharmacological interventions have failed in clinical trials, meaning that symptom management is the only treatment option. The water channel protein aquaporin-4 (AQP4) is expressed in astrocytes and mediates water flux across the blood-brain and blood-spinal cord barriers. Here we show that AQP4 cell-surface abundance increases in response to hypoxia-induced cell swelling in a calmodulin-dependent manner. Calmodulin directly binds the AQP4 carboxyl terminus, causing a specific conformational change and driving AQP4 cell-surface localization. Inhibition of calmodulin in a rat spinal cord injury model with the licensed drug trifluoperazine inhibited AQP4 localization to the blood-spinal cord barrier, ablated CNS edema, and led to accelerated functional recovery compared with untreated animals. We propose that targeting the mechanism of calmodulin-mediated cell-surface localization of AQP4 is a viable strategy for development of CNS edema therapies.


Assuntos
Aquaporina 4/metabolismo , Edema/metabolismo , Edema/terapia , Animais , Aquaporina 4/fisiologia , Astrócitos/metabolismo , Encéfalo/metabolismo , Edema Encefálico/metabolismo , Calmodulina/metabolismo , Sistema Nervoso Central/metabolismo , Edema/fisiopatologia , Masculino , Ratos , Ratos Sprague-Dawley , Medula Espinal/metabolismo , Traumatismos da Medula Espinal/metabolismo , Trifluoperazina/farmacologia
2.
Biophys J ; 122(5): 741-752, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36751130

RESUMO

Members of the fatty acid binding protein (FABP) family function as intracellular transporters of long-chain fatty acids and other hydrophobic molecules to different cellular compartments. Brain FABP (FABP7) exhibits ligand-directed differences in cellular transport. For example, when FABP7 binds to docosahexaenoic acid (DHA), the complex relocates to the nucleus and influences transcriptional activity, whereas FABP7 bound with monosaturated fatty acids remains in the cytosol. Preferential binding of FABP7 to polyunsaturated fatty acids like DHA has been previously observed and is thought to play a role in differential localization. However, we find that at 37°C, FABP7 does not display strong selectivity, suggesting that the conformational ensemble of FABP7 and its perturbation upon binding may be important. We use molecular dynamics simulations, NMR, and a variety of biophysical techniques to better understand the conformational ensemble of FABP7, how it is perturbed by fatty acid binding, and how this may be related to ligand-directed transport. We find that FABP7 has high degree of conformational heterogeneity that is substantially reduced upon ligand binding. We also observe substantial heterogeneity in ligand binding poses, which is consistent with our finding that ligand binding is resistant to mutations in key polar residues in the binding pocket. Our NMR experiments show that DHA binding leads to chemical shift perturbations in residues near the nuclear localization signal, which may point toward a mechanism of differential transport.


Assuntos
Proteínas de Ligação a Ácido Graxo , Simulação de Dinâmica Molecular , Ligantes , Proteínas de Ligação a Ácido Graxo/química , Proteína 7 de Ligação a Ácidos Graxos/genética , Proteína 7 de Ligação a Ácidos Graxos/metabolismo , Ácidos Graxos Insaturados
3.
Pediatr Res ; 93(3): 492-502, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35778499

RESUMO

Lower respiratory tract infections (LRTIs) are a leading cause of morbidity and mortality in children. The ability of healthcare providers to diagnose and prognose LRTIs in the pediatric population remains a challenge, as children can present with similar clinical features regardless of the underlying pathogen or ultimate severity. Metabolomics, the large-scale analysis of metabolites and metabolic pathways offers new tools and insights that may aid in diagnosing and predicting the outcomes of LRTIs in children. This review highlights the latest literature on the clinical utility of metabolomics in providing care for children with bronchiolitis, pneumonia, COVID-19, and sepsis. IMPACT: This article summarizes current metabolomics approaches to diagnosing and predicting the course of pediatric lower respiratory infections. This article highlights the limitations to current metabolomics research and highlights future directions for the field.


Assuntos
COVID-19 , Pneumonia , Infecções Respiratórias , Sepse , Criança , Humanos , Infecções Respiratórias/diagnóstico , Infecções Respiratórias/epidemiologia , Pneumonia/diagnóstico , Sepse/diagnóstico , Metabolômica
4.
J Neurosci ; 41(15): 3366-3385, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33712513

RESUMO

Excessive inflammation within the CNS is injurious, but an immune response is also required for regeneration. Macrophages and microglia adopt different properties depending on their microenvironment, and exposure to IL4 and IL13 has been used to elicit repair. Unexpectedly, while LPS-exposed macrophages and microglia killed neural cells in culture, the addition of LPS to IL4/IL13-treated macrophages and microglia profoundly elevated IL10, repair metabolites, heparin binding epidermal growth factor trophic factor, antioxidants, and matrix-remodeling proteases. In C57BL/6 female mice, the generation of M(LPS/IL4/IL13) macrophages required TLR4 and MyD88 signaling, downstream activation of phosphatidylinositol-3 kinase/mTOR and MAP kinases, and convergence on phospho-CREB, STAT6, and NFE2. Following mouse spinal cord demyelination, local LPS/IL4/IL13 deposition markedly increased lesional phagocytic macrophages/microglia, lactate and heparin binding epidermal growth factor, matrix remodeling, oligodendrogenesis, and remyelination. Our data show that a prominent reparative state of macrophages/microglia is generated by the unexpected integration of pro- and anti-inflammatory activation cues. The results have translational potential, as the LPS/IL4/IL13 mixture could be locally applied to a focal CNS injury to enhance neural regeneration and recovery.SIGNIFICANCE STATEMENT The combination of LPS and regulatory IL4 and IL13 signaling in macrophages and microglia produces a previously unknown and particularly reparative phenotype devoid of pro-inflammatory neurotoxic features. The local administration of LPS/IL4/IL13 into spinal cord lesion elicits profound oligodendrogenesis and remyelination. The careful use of LPS and IL4/IL13 mixture could harness the known benefits of neuroinflammation to enable repair in neurologic insults.


Assuntos
Macrófagos/metabolismo , Microglia/metabolismo , Bainha de Mielina/metabolismo , Transdução de Sinais , Regeneração da Medula Espinal , Medula Espinal/metabolismo , Animais , Células Cultivadas , Técnicas de Cocultura/métodos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Feminino , Inflamação , Interleucina-13/farmacologia , Interleucina-4/farmacologia , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Fator 88 de Diferenciação Mieloide/metabolismo , Subunidade p45 do Fator de Transcrição NF-E2/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fator de Transcrição STAT6/metabolismo , Medula Espinal/patologia , Medula Espinal/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Receptor 4 Toll-Like/metabolismo
5.
J Proteome Res ; 20(3): 1630-1638, 2021 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529033

RESUMO

Pre-pregnancy obesity and excessive gestational weight gain (GWG) are risk factors for future maternal and childhood obesity. Maternal obesity is potentially communicated to the fetus in part by the metabolome, altering the child's metabolic program in early development. Fasting maternal blood samples from 37 singleton pregnancies at 25-28 weeks of gestation were obtained from mothers with pre-pregnancy body mass indexes (BMIs) between 18 and 40 kg/m2. Various health measures including GWG, diet, and physical activity were also assessed. At term (37-42 weeks), a venous umbilical cord sample was obtained. Serum metabolomic profiles were measured using nuclear magnetic resonance spectroscopy as well as a gut and metabolic hormone panel. Maternal and cord serum metabolites were tested for associations with pre-pregnancy BMI, GWG, health outcomes, and gut and metabolic hormones. While cord blood metabolites showed no significant correlation to maternal obesity status or other measured health outcomes, maternal serum metabolites showed distinct profiles for lean, overweight, and obese women. Additionally, four serum metabolites, namely, glutamate, lysine, pyruvate, and valine, allowed prediction of excessive GWG when pre-pregnancy BMI was controlled. Metabolic biomarkers predictive of GWG are reported and, if validated, could aid in the guidance of prenatal weight management plans as the majority of pregnancy weight gain occurs in the third trimester.


Assuntos
Ganho de Peso na Gestação , Índice de Massa Corporal , Criança , Feminino , Sangue Fetal , Humanos , Avaliação de Resultados em Cuidados de Saúde , Sobrepeso , Gravidez
6.
Am J Physiol Lung Cell Mol Physiol ; 321(1): L79-L90, 2021 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-33949201

RESUMO

In this study, we aimed to identify acute respiratory distress syndrome (ARDS) metabolic fingerprints in selected patient cohorts and compare the metabolic profiles of direct versus indirect ARDS and hypoinflammatory versus hyperinflammatory ARDS. We hypothesized that the biological and inflammatory processes in ARDS would manifest as unique metabolomic fingerprints that set ARDS apart from other intensive care unit (ICU) conditions and could help examine ARDS subphenotypes and clinical subgroups. Patients with ARDS (n = 108) and ICU ventilated controls (n = 27) were included. Samples were randomly divided into 2/3 training and 1/3 test sets. Samples were analyzed using 1H nuclear magnetic resonance spectroscopy and gas chromatography-mass spectrometry. Twelve proteins/cytokines were also measured. Orthogonal partial least squares discriminant analysis (OPLS-DA) was used to select the most differentiating ARDS metabolites and protein/cytokines. Predictive performance of OPLS-DA models was measured in the test set. Temporal changes of metabolites were examined as patients progressed through ARDS until clinical recovery. Metabolic profiles of direct versus indirect ARDS subgroups and hypoinflammatory versus hyperinflammatory ARDS subgroups were compared. Serum metabolomics and proteins/cytokines had similar area under receiver operator curves when distinguishing ARDS from ICU controls. Pathway analysis of ARDS differentiating metabolites identified a dominant involvement of serine-glycine metabolism. In longitudinal tracking, the identified pathway metabolites generally exhibited correction by 7-14 days, coinciding with clinical improvement. ARDS subphenotypes and clinical subgroups were metabolically distinct. However, our identified metabolic fingerprints are not ARDS diagnostic biomarkers, and further research is required to ascertain generalizability. In conclusion, patients with ARDS are metabolically different from ICU controls. ARDS subphenotypes and clinical subgroups are metabolically distinct.


Assuntos
Benchmarking/métodos , Biomarcadores/metabolismo , Metaboloma , Síndrome do Desconforto Respiratório/patologia , Idoso , Biomarcadores/análise , Estudos de Casos e Controles , Análise Discriminante , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Síndrome do Desconforto Respiratório/metabolismo
7.
Prostate ; 81(11): 713-720, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34097313

RESUMO

BACKGROUND: Prostate cancer (PCa) is a metabolic disease. Most men are diagnosed with low grade indolent disease and differentiating these men from those who have life threatening cancer is a challenging but important clinical dilemma. There are currently limited biomarkers that can distinguish between the indolent Gleason grade 6 and higher-grade disease. Moreover, some individuals initially diagnosed with low grade disease progress to higher grade disease. Currently prostate biopsies are the only reliable methods of stratifying risk, but biopsies can cause significant morbidity, sample only a small portion of the gland and are costly. Therefore, biomarkers distinguishing between indolent and aggressive patterns of PCa are urgently required to minimize biopsy-associated morbidity, prevent over-treatment of indolent PCa and to better stratify patients for appropriate treatment. METHODS: Seminal fluid samples were collected from normal individuals (n = 13) Before infertility treatment and histologically confirmed PCa patients (n = 51). 1 H Nuclear magnetic resonance spectroscopy and orthogonal partial least square discriminant analysis were used to compare the populations. RESULTS: Alterations in amino acids levels, specifically lysine and serine and changes in glycolytic intermediates were the most significant metabolic features associated with differences between healthy controls and PCa and between Gleason grade 6 (GS6) and Gleason grade 7 (GS7) samples. Orthogonal partial least square plots discriminated healthy controls from PCa samples (R 2 = 0.54, Q 2 = 0.31; area under the receiver operating characteristics curve [AUC] = 0.96), and GS6 from GS7 samples (R 2 = 0.62, Q 2 = 0.49; AUC = 0.98) based on lysine and serine content. CONCLUSION: This study suggests that seminal plasma metabolomics profiling of seminal fluid is a promising means of differentiating indolent from aggressive disease. Particularly, lysine and serine levels may be able to differentiate GS6 from GS7 disease.


Assuntos
Lisina/análise , Metabolômica , Gradação de Tumores/métodos , Sêmen/química , Serina/análise , Idoso , Biomarcadores Tumorais/análise , Biópsia , Diagnóstico Diferencial , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Próstata/patologia , Antígeno Prostático Específico/sangue , Neoplasias da Próstata/patologia , Curva ROC
8.
Biochem Cell Biol ; 99(1): 138-148, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32871093

RESUMO

Many pathogenic bacteria can protect themselves from the effects of antibiotics and the host immune response system by forming biofilms. Biofilms are polymer-entrapped bacterial cells, which adhere to each other and are often attached to a surface. Eradication of bacterial biofilms typically requires much higher concentrations of antibiotics than are normally needed to kill cultured planktonic cells, raising serious clinical concerns. In an attempt to prevent the formation of biofilms or to break up existing biofilms of pathogenic bacteria, herein we have used the standard crystal violet assay as well as the Calgary biofilm device to test several lactoferrin- and lactoferricin-derived antimicrobial peptides for their antibiofilm activity against Pseudomonas aeruginosa PAO1. Our results revealed that the short bovine lactoferricin-derived RRWQWR-NH2 (20-25) hexapeptide has no activity against P. aeruginosa PAO1. Moreover, the longer human lactoferricin-derived peptide GRRRRSVQWCA (1-11) and the bovine lactoferrampin (268-284) peptide were also almost devoid of activity. However, several different "mix-and-match" dimeric versions of the two lactoferricin-derived peptides proved quite effective in preventing the formation of biofilms at low concentrations, and in some cases, could even eradicate an existing biofilm. Moreover, the full-length bovine lactoferricinB (17-41) peptide also displayed considerable antimicrobial activity. Some of the longer lactoferricin-derived dimeric peptides acted through a bactericidal mechanism, whereas others seemed to interfere in cell-signalling processes. Taken together, our results indicate that synthetic dimeric peptides comprising short naturally occurring human and bovine lactoferricin constructs could be further developed as antibiofilm agents.


Assuntos
Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Lactoferrina/metabolismo , Fragmentos de Peptídeos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/metabolismo , Bovinos , Relação Dose-Resposta a Droga , Humanos , Lactoferrina/química , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo
9.
J Proteome Res ; 19(1): 382-390, 2020 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-31696714

RESUMO

The ketogenic diet (KD) can improve the core features of autism spectrum disorders (ASD) in some children, but the effects on the overall metabolism remain unclear. This pilot study investigated the behavioral parameters in relation to blood metabolites and trace elements in a cohort of 10 typically developed controls (TC) and 17 children with ASD at baseline and following 3 months of treatment with a modified KD regimen. A nontargeted, multiplatform metabolomic approach was employed, including gas chromatography-mass spectrometry, 1H nuclear magnetic resonance spectroscopy, and inductively coupled plasma-mass spectrometry. The associations among plasma metabolites, trace elements, and behavior scores were investigated. Employing a combination of metabolomic platforms, 118 named metabolites and 73 trace elements were assessed. Relative to TC, a combination of glutamate, galactonate, and glycerol discriminated ASD with 88% accuracy. ASD had higher concentrations of galactose intermediates, gut microbe-derived trimethylamine N-oxide and N-acetylserotonin, and lower concentrations of 3-hydroxybutyrate and selenium at baseline. Following 3 months of KD intervention, the levels of circulating ketones and acetylcarnitine were increased. KD restored lower selenium levels in ASD to that of controls, and correlation analysis identified a novel negative correlation between the changes in selenium and behavior scores. Based on the different behavior responses to KD, we found that high responders had greater concentrations of 3-hydroxybutyrate and ornithine, with lower galactose. These findings enhance our current understanding of the metabolic derangements present in ASD and may be of utility in predicting favorable responses to KD intervention.


Assuntos
Transtorno do Espectro Autista/dietoterapia , Transtorno do Espectro Autista/metabolismo , Adolescente , Transtorno do Espectro Autista/psicologia , Criança , Pré-Escolar , Dieta Cetogênica , Feminino , Humanos , Isótopos/sangue , Masculino , Espectrometria de Massas/métodos , Metaboloma/efeitos dos fármacos , Metaboloma/fisiologia , Espectroscopia de Prótons por Ressonância Magnética , Selênio/sangue , Oligoelementos/sangue , Resultado do Tratamento
10.
FASEB J ; 33(4): 5153-5167, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30629464

RESUMO

A maternal high-fat/sucrose diet, in the presence of maternal obesity, can program increased susceptibility to obesity and metabolic disease in offspring. In particular, nonalcoholic fatty liver disease risk is associated with poor maternal nutrition and obesity status, which may manifest via alterations in gut microbiota. Here, we report that in a preclinical model of diet-induced maternal obesity, maternal supplementation of a high-fat/sucrose diet with the prebiotic oligofructose improves glucose tolerance, insulin sensitivity, and hepatic steatosis in offspring following a long-term high-fat/sucrose dietary challenge compared with offspring of untreated dams. These improvements are associated with alterations in gut microbial composition and serum inflammatory profiles in early life and improvements in inflammatory and fatty-acid gene expression profiles in tissues. Serum metabolomics analysis highlights potential metabolic links between the gut microbiota and the degree of steatosis, including alterations in 1-carbon metabolism. Overall, our data suggest that maternal prebiotic intake protects offspring against hepatic steatosis and insulin resistance following 21 wk of high fat/sucrose diet, which is in part due to alterations in gut microbiota.-Paul, H. A., Collins, K. H., Nicolucci, A. C., Urbanski, S. J., Hart, D. A., Vogel, H. J., Reimer, R. A. Maternal prebiotic supplementation reduces fatty liver development in offspring through altered microbial and metabolomic profiles in rats.


Assuntos
Fígado Gorduroso/tratamento farmacológico , Fígado Gorduroso/microbiologia , Prebióticos , Animais , Dieta Hiperlipídica/efeitos adversos , Feminino , Microbioma Gastrointestinal/fisiologia , Teste de Tolerância a Glucose , Resistência à Insulina/fisiologia , Espectroscopia de Ressonância Magnética , Metabolômica , Oligossacarídeos/farmacologia , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Sacarose/farmacologia , Triglicerídeos/metabolismo , Aumento de Peso/fisiologia
11.
Crit Care ; 24(1): 461, 2020 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-32718333

RESUMO

INTRODUCTION: Pneumonia is the most common cause of mortality from infectious diseases, the second leading cause of nosocomial infection, and the leading cause of mortality among hospitalized adults. To improve clinical management, metabolomics has been increasingly applied to find specific metabolic biopatterns (profiling) for the diagnosis and prognosis of various infectious diseases, including pneumonia. METHODS: One hundred fifty bacterial community-acquired pneumonia (CAP) patients whose plasma samples were drawn within the first 24 h of hospital admission were enrolled in this study and separated into two age- and sex-matched cohorts: non-survivors (died ≤ 90 days) and survivors (survived > 90 days). Three analytical tools, 1H-NMR spectroscopy, GC-MS, and targeted DI-MS/MS, were used to prognosticate non-survivors from survivors by means of metabolic profiles. RESULTS: We show that quantitative lipid profiling using DI-MS/MS can predict the 90-day mortality and in-hospital mortality among patients with bacterial CAP compared to 1H-NMR- and GC-MS-based metabolomics. This study showed that the decreased lysophosphatidylcholines and increased acylcarnitines are significantly associated with increased mortality in bacterial CAP. Additionally, we found that decreased lysophosphatidylcholines and phosphatidylcholines (> 36 carbons) and increased acylcarnitines may be used to predict the prognosis of in-hospital mortality for bacterial CAP as well as the need for ICU admission and severity of bacterial CAP. DISCUSSION: This study demonstrates that lipid-based plasma metabolites can be used for the prognosis of 90-day mortality among patients with bacterial CAP. Moreover, lipid profiling can be utilized to identify patients with bacterial CAP who are at the highest risk of dying in hospital and who need ICU admission as well as the severity assessment of CAP.


Assuntos
Mortalidade Hospitalar/tendências , Lipídeos/análise , Pneumonia/sangue , Prognóstico , Idoso , Idoso de 80 Anos ou mais , Alberta , Estudos de Casos e Controles , Infecções Comunitárias Adquiridas/sangue , Infecções Comunitárias Adquiridas/mortalidade , Feminino , Hospitalização/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos , Lipídeos/sangue , Masculino , Pessoa de Meia-Idade , Pennsylvania , Pneumonia/mortalidade , Estudos Retrospectivos
12.
Biochim Biophys Acta Mol Cell Res ; 1865(3): 507-521, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29247668

RESUMO

Calmodulin (CaM) is a universal regulator for a huge number of proteins in all eukaryotic cells. Best known is its function as a calcium-dependent modulator of the activity of enzymes, such as protein kinases and phosphatases, as well as other signaling proteins including membrane receptors, channels and structural proteins. However, less well known is the fact that CaM can also function as a Ca2+-dependent adaptor protein, either by bridging between different domains of the same protein or by linking two identical or different target proteins together. These activities are possible due to the fact that CaM contains two independently-folded Ca2+ binding lobes that are able to interact differentially and to some degree separately with targets proteins. In addition, CaM can interact with and regulates several proteins that function exclusively as adaptors. This review provides an overview over our present knowledge concerning the structural and functional aspects of the role of CaM as an adaptor protein and as a regulator of known adaptor/scaffold proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Sinalização do Cálcio/genética , Calmodulina/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos/genética , Cálcio/metabolismo , Calmodulina/química , Humanos , Ligação Proteica
13.
J Proteome Res ; 18(11): 3867-3875, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31533430

RESUMO

Energy imbalance is a primary cause of obesity. While the classical approach to attenuate weight gain includes an increase in energy expenditure through exercise, dietary manipulation such as the inclusion of dairy products has also been proven effective. In the present study, we explored the potential mechanisms by which dairy and exercise attenuate weight gain in diet-induced obese rats. Male Sprague-Dawley rats were fed a high fat, high-sugar (HFHS) diet to induce obesity for 8 weeks. Rats were then further grouped into either control (HFHS + casein) or dairy diet (HFHS + nonfat skim milk) with and without treadmill exercise for 6 weeks. Serum and fresh fecal samples were collected for gut microbiota, serum metabolomics, and metallomics analysis. Diet and exercise resulted in distinct separation in both gut microbiota and serum metabolite profiles. Most intriguingly, obesogenic bacteria including Desulfovibrio and Oribacterium were reduced, and bioactive molecules such as mannose and arginine were significantly increased in the dairy group. Correlations of at least six bacterial genera with serum metal ions and metabolites were also found. Results reveal distinct impacts of dairy and exercise on the gut microbiota and in the modulation of circulating metabolites with the former primarily responsible for driving microbial alterations known to attenuate weight gain.


Assuntos
Microbioma Gastrointestinal/fisiologia , Metaboloma/fisiologia , Obesidade/metabolismo , Condicionamento Físico Animal/fisiologia , Redução de Peso/fisiologia , Animais , Arginina/sangue , Arginina/metabolismo , Caseínas/administração & dosagem , Dieta Hiperlipídica/efeitos adversos , Fezes/microbiologia , Masculino , Manose/sangue , Manose/metabolismo , Metabolômica/métodos , Obesidade/sangue , Obesidade/etiologia , Dinâmica Populacional , Ratos Sprague-Dawley
14.
BMC Cancer ; 18(1): 26, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29301511

RESUMO

BACKGROUND: Early diagnosis of colorectal cancer (CRC) simplifies treatment and improves treatment outcomes. We previously described a diagnostic metabolomic biomarker derived from semi-quantitative gas chromatography-mass spectrometry. Our objective was to determine whether a quantitative assay of additional metabolomic features, including parts of the lipidome could enhance diagnostic power; and whether there was an advantage to deriving a combined diagnostic signature with a broader metabolomic representation. METHODS: The well-characterized Biocrates P150 kit was used to quantify 163 metabolites in patients with CRC (N = 62), adenoma (N = 31), and age- and gender-matched disease-free controls (N = 81). Metabolites included in the analysis included phosphatidylcholines, sphingomyelins, acylcarnitines, and amino acids. Using a training set of 32 CRC and 21 disease-free controls, a multivariate metabolomic orthogonal partial least squares (OPLS) classifier was developed. An independent set of 28 CRC and 20 matched healthy controls was used for validation. Features characterizing 31 colorectal adenomas from their healthy matched controls were also explored, and a multivariate OPLS classifier for colorectal adenoma could be proposed. RESULTS: The metabolomic profile that distinguished CRC from controls consisted of 48 metabolites (R2Y = 0.83, Q2Y = 0.75, CV-ANOVA p-value < 0.00001). In this quantitative assay, the coefficient of variance for each metabolite was <10%, and this dramatically enhanced the separation of these groups. Independent validation resulted in AUROC of 0.98 (95% CI, 0.93-1.00) and sensitivity and specificity of 93% and 95%. Similarly, we were able to distinguish adenoma from controls (R2Y = 0.30, Q2Y = 0.20, CV-ANOVA p-value = 0.01; internal AUROC = 0.82 (95% CI, 0.72-0.93)). When combined with the previously generated GC-MS signatures for CRC and adenoma, the candidate biomarker performance improved slightly. CONCLUSION: The diagnostic power for metabolomic tests for colorectal neoplasia can be improved by utilizing a multimodal approach and combining metabolites from diverse chemical classes. In addition, quantification of metabolites enhances separation of disease-specific metabolomic profiles. Our future efforts will be focused on developing a quantitative assay for the metabolites comprising the optimal diagnostic biomarker.


Assuntos
Adenoma/metabolismo , Neoplasias Colorretais/metabolismo , Metaboloma , Metabolômica , Adenoma/diagnóstico , Adenoma/patologia , Idoso , Aminoácidos/metabolismo , Biomarcadores Tumorais/metabolismo , Carnitina/análogos & derivados , Carnitina/metabolismo , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo
15.
Biometals ; 36(3): 385-390, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37171688
16.
J Proteome Res ; 16(2): 798-805, 2017 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-27936752

RESUMO

Advancing age is associated with declines in maximal oxygen consumption. Declines in aerobic capacity not only contribute to the aging process but also are an independent risk factor for morbidity, cardiovascular disease, and all-cause mortality. Although statistically convincing, the relationships between aerobic capacity, aging, and disease risk remain largely unresolved. To this end, we employed sensitive, system-based metabolomics approach to determine whether enhanced aerobic capacity could mitigate some of the changes seen in the plasma metabolomic profile associated with aging. Metabolomic profiles of plasma samples obtained from young (13 month) and old (26 month) rats bred for low (LCR) or high (HCR) running capacity using proton nuclear magnetic resonance spectroscopy (1H NMR) were examined. Results demonstrated strong profile separation in old and low aerobic capacity rats, whereas young and high aerobic capacity rat models were less predictive. Significantly differential metabolites between the groups include taurine, acetone, valine, and trimethylamine-N-oxide among other metabolites, specifically citrate, succinate, isovalerate, and proline, were differentially increased in older HCR animals compared with their younger counterparts. When interactions between age and aerobic capacity were examined, results demonstrated that enhanced aerobic capacity could mitigate some but not all age-associated alterations in the metabolomic profile.


Assuntos
Envelhecimento/genética , Metaboloma/genética , Metabolômica , Consumo de Oxigênio/genética , Envelhecimento/metabolismo , Animais , Espectroscopia de Ressonância Magnética , Miocárdio/metabolismo , Ratos , Fatores de Risco , Corrida
17.
Biochim Biophys Acta ; 1858(2): 403-14, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26657693

RESUMO

The tear film protects the eye from foreign particles and pathogens, prevents excess evaporation, provides lubrication, and maintains a high quality optical surface necessary for vision. The anterior layer of tear film consists of polar and non-polar lipid layers. The polar lipids form a monolayer on the aqueous subphase, acting as surfactants for the non-polar lipid multilayer. A tear film polar lipid biomimetic consisting of dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl glucosylceramide (PGC), and palmitoyl sphingomyelin (PSM) was characterized using Langmuir monolayers and Brewster angle microscopy (BAM). Lipid combinations formed very stable monolayers, especially those containing DPPC or PSM. Surface experiments and elasticity analyses revealed that PGC resulted in more condensed and rigid mixed monolayers. DPPE provided resistance to large changes in lipid ordering over a wide surface pressure range. Ternary mixtures containing DPPE and PGC with either DPPC or PSM experienced the greatest lipid ordering within the natural tear film surface pressure range suggesting that these lipids are important to maintain tear film integrity during the inter-blink period. Finally, BAM images revealed unique structures within monolayers of DPPC, DPPE, and PGC at the natural tear film surface pressure. 3D analysis of these domains suggested either the formation of multilayers or outward protrusions at surface pressures far below the point of irreversible collapse as seen on the isotherm. This entails that the polar lipids of tear film may be capable of multilayer formation or outward folding as a mechanism to prevent rupture of the tear film during a blink.


Assuntos
Membranas Artificiais , Fosfolipídeos/química , Lágrimas/química
18.
Biochim Biophys Acta ; 1858(5): 1012-23, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26724205

RESUMO

The increase in antibiotic-resistant bacterial infections has prompted significant academic research into new therapeutic agents targeted against these pathogens. Antimicrobial peptides (AMPs) appear as promising candidates, due their potent antimicrobial activity and their ubiquitous presence in almost all organisms. Tritrpticin is a member of this family of peptides and has been shown to exert a strong antimicrobial activity against several bacterial strains. Tritrpticin's main structural characteristic is the presence of three consecutive Trp residues at the center of the peptide. These residues play an important role in the activity of tritrpticin against Escherichia coli. In this work, a recombinant version of tritrpticin was produced in E. coli using calmodulin as a fusion protein expression tag to overcome the toxicity of the peptide. When used in combination with glyphosate, an inhibitor of the endogenous synthesis of aromatic amino acids, this expression system allowed for the incorporation of fluorinated Trp analogs at very high levels (>90%). The antimicrobial activity of the 4-, 5- and 6-fluoro-Trp-containing tritrpticins against E. coli was as strong as the activity of the native peptide. Similarly, the tritrpticin analogs exhibited comparable abilities to perturb and permeabilize synthetic lipid bilayers as well as the outer and inner membrane of E. coli. Furthermore, the use of 19F NMR spectroscopy established that each individual fluoro-Trp residue interacts differently with SDS micelles, supporting the idea that each Trp in the original tritrpticin plays a different role in the perturbing/permeabilizing activity of the peptide. Moreover, our work demonstrates that the use of fluoro-Trp in solvent perturbation 19F NMR experiments provides detailed site-specific information on the insertion of the Trp residues in biological membrane mimetics. This article is part of a Special Issue entitled: Antimicrobial peptides edited by Karl Lohner and Kai Hilpert.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Oligopeptídeos/farmacologia , Proteínas Recombinantes de Fusão/farmacologia , Sequência de Aminoácidos , Antibacterianos/síntese química , Antibacterianos/metabolismo , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/farmacologia , Calmodulina/genética , Calmodulina/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Perfilação da Expressão Gênica , Glicina/análogos & derivados , Glicina/farmacologia , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Oligopeptídeos/biossíntese , Oligopeptídeos/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Relação Estrutura-Atividade , Triptofano/análogos & derivados , Triptofano/metabolismo , Glifosato
19.
Biochim Biophys Acta Biomembr ; 1859(3): 319-330, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27993563

RESUMO

The tear film lipid layer is formed on the anterior surface of the eye, functioning as a barrier to excess evaporation and foreign particles, while also providing stability to the tear film. The lipid layer is organized into a polar lipid layer consisting of phospholipids, ceramides, and free fatty acids that act as a surfactant to a non-polar multilayer of wax and cholesterol esters. Due to shear forces from eye movement and the compression and expansion of blinking, the tear lipids are under constant stress. However, tear film is able to resist immediate rupture and remains intact over multiple blinks. This work aimed to better understand the lateral organization of selected tear film polar lipids. The polar lipid biomimetic studied here consisted of dipalmitoyl phosphatidylcholine (DPPC), dipalmitoyl phosphatidylethanolamine (DPPE), palmitoyl glucosylceramide (PGC), and palmitoyl sphingomyelin (PSM). Surface pressure-area isocycles mimicked blinking and films were visualized by Brewster angle microscopy (BAM). All lipid systems formed relatively reversible films as indicated by limited hysteresis. However, pure DPPC and PSM films experienced greater changes in lipid packing upon compression and expansion compared to pure PGC and DPPE. This suggests that the driving force behind maintaining the lateral organization of the polar lipids from tear film may be the hydrogen bonding propensities of the head groups. Additionally, isocycles of films containing DPPC, DPPE, and PGC mixtures exhibited evidence for reversible multilayer formation or folding. This was supported by 3D analysis of structures that formed during compression but reintegrated back into the bulk lipid film during expansion near the in vitro tear film surface pressure of the open eye. Therefore, the polar lipids of tear film may be directly involved in preventing film rupture during a blink.


Assuntos
Lipossomas Unilamelares/química , 1,2-Dipalmitoilfosfatidilcolina/química , Materiais Biocompatíveis/química , Microscopia , Fosfatidiletanolaminas/química , Esfingomielinas/química , Propriedades de Superfície , Tensão Superficial , Lágrimas/química , Lágrimas/metabolismo
20.
Biochem Cell Biol ; 95(1): 91-98, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28165293

RESUMO

Lactoferrin (LF) is a mammalian host defense glycoprotein with diverse biological activities. Peptides derived from the cationic region of LF possess cytotoxic activity against cancer cells in vitro and in vivo. Bovine lactoferricin (LFcinB), a peptide derived from bovine LF (bLF), exhibits broad-spectrum anticancer activity, while a similar peptide derived from human LF (hLF) is not as active. In this work, several peptides derived from the N-terminal regions of bLF and hLF were studied for their anticancer activities against leukemia and breast-cancer cells, as well as normal peripheral blood mononuclear cells. The cyclized LFcinB-CLICK peptide, which possesses a stable triazole linkage, showed improved anticancer activity, while short peptides hLF11 and bLF10 were not cytotoxic to cancer cells. Interestingly, hLF11 can act as a cell-penetrating peptide; when combined with the antimicrobial core sequence of LFcinB (RRWQWR) through either a Pro or Gly-Gly linker, toxicity to Jurkat cells increased. Together, our work extends the library of LF-derived peptides tested for anticancer activity, and identified new chimeric peptides with high cytotoxicity towards cancerous cells. Additionally, these results support the notion that short cell-penetrating peptides and antimicrobial peptides can be combined to create new adducts with increased potency.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Lactoferrina/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Bovinos , Feminino , Hemólise/efeitos dos fármacos , Humanos , Células Jurkat , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa