Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Hum Mol Genet ; 29(17): 2920-2935, 2020 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-32803224

RESUMO

Neuroinflammation is a key contributor to the pathology of Alzheimer's disease (AD). CD33 (Siglec-3) is a transmembrane sialic acid-binding receptor on the surface of microglial cells. CD33 is upregulated on microglial cells from post-mortem AD patient brains, and high levels of CD33 inhibit uptake and clearance of amyloid beta (Aß) in microglial cell cultures. Furthermore, knockout of CD33 reduces amyloid plaque burden in mouse models of AD. Here, we tested whether a gene therapy strategy to reduce CD33 on microglia in AD could decrease Aß plaque load. Intracerebroventricular injection of an adeno-associated virus (AAV) vector-based system encoding an artificial microRNA targeting CD33 (miRCD33) into APP/PS1 mice reduced CD33 mRNA and TBS-soluble Aß40 and Aß42 levels in brain extracts. Treatment of APP/PS1 mice with miRCD33 vector at an early age (2 months) was more effective at reducing Aß plaque burden than intervening at later times (8 months). Furthermore, early intervention downregulated several microglial receptor transcripts (e.g. CD11c, CD47 and CD36) and pro-inflammatory activation genes (e.g. Tlr4 and Il1b). Marked reductions in the chemokine Ccl2 and the pro-inflammatory cytokine Tnfα were observed at the protein level in the brain of APP/PS1 mice treated with miRCD33 vector. Overall, our data indicate that CD33 is a viable target for AAV-based knockdown strategies to reduce AD pathology. One Sentence Summary: A gene therapy approach for Alzheimer's disease using adeno-associated virus vector-based knockdown of CD33 reduced amyloid beta accumulation and neuroinflammation.


Assuntos
Doença de Alzheimer/terapia , Terapia Genética , Presenilina-1/genética , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Dependovirus/genética , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Transgênicos/genética , Microglia/metabolismo , Microglia/patologia , Placa Amiloide/genética , Placa Amiloide/patologia , Lectina 3 Semelhante a Ig de Ligação ao Ácido Siálico/antagonistas & inibidores
2.
J Neurooncol ; 139(2): 293-305, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29767307

RESUMO

The malignant primary brain tumor, glioblastoma (GBM) is generally incurable. New approaches are desperately needed. Adeno-associated virus (AAV) vector-mediated delivery of anti-tumor transgenes is a promising strategy, however direct injection leads to focal transgene spread in tumor and rapid tumor division dilutes out the extra-chromosomal AAV genome, limiting duration of transgene expression. Intravenous (IV) injection gives widespread distribution of AAV in normal brain, however poor transgene expression in tumor, and high expression in non-target cells which may lead to ineffective therapy and high toxicity, respectively. Delivery of transgenes encoding secreted, anti-tumor proteins to tumor stromal cells may provide a more stable and localized reservoir of therapy as they are more differentiated than fast-dividing tumor cells. Reactive astrocytes and tumor-associated macrophage/microglia (TAMs) are stromal cells that comprise a large portion of the tumor mass and are associated with tumorigenesis. In mouse models of GBM, we used IV delivery of exosome-associated AAV vectors driving green fluorescent protein expression by specific promoters (NF-κB-responsive promoter and a truncated glial fibrillary acidic protein promoter), to obtain targeted transduction of TAMs and reactive astrocytes, respectively, while avoiding transgene expression in the periphery. We used our approach to express the potent, yet toxic anti-tumor cytokine, interferon beta, in tumor stroma of a mouse model of GBM, and achieved a modest, yet significant enhancement in survival compared to controls. Noninvasive genetic modification of tumor microenvironment represents a promising approach for therapy against cancers. Additionally, the vectors described here may facilitate basic research in the study of tumor stromal cells in situ.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/terapia , Dependovirus/genética , Terapia Genética , Interferon beta/genética , Células Estromais/metabolismo , Animais , Astrócitos/citologia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Modelos Animais de Doenças , Feminino , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Regiões Promotoras Genéticas , Células Estromais/citologia
3.
Mol Ther ; 25(2): 379-391, 2017 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-28082074

RESUMO

Adeno-associated virus (AAV) is a safe and effective vector for gene therapy for retinal disorders. Gene therapy for hearing disorders is not as advanced, in part because gene delivery to sensory hair cells of the inner ear is inefficient. Although AAV transduces the inner hair cells of the mouse cochlea, outer hair cells remain refractory to transduction. Here, we demonstrate that a vector, exosome-associated AAV (exo-AAV), is a potent carrier of transgenes to all inner ear hair cells. Exo-AAV1-GFP is more efficient than conventional AAV1-GFP, both in mouse cochlear explants in vitro and with direct cochlear injection in vivo. Exo-AAV shows no toxicity in vivo, as assayed by tests of auditory and vestibular function. Finally, exo-AAV1 gene therapy partially rescues hearing in a mouse model of hereditary deafness (lipoma HMGIC fusion partner-like 5/tetraspan membrane protein of hair cell stereocilia [Lhfpl5/Tmhs-/-]). Exo-AAV is a powerful gene delivery system for hair cell research and may be useful for gene therapy for deafness.


Assuntos
Dependovirus/genética , Exossomos/metabolismo , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Células Ciliadas Auditivas Internas/metabolismo , Audição/genética , Animais , Células Cultivadas , Dependovirus/classificação , Potenciais Evocados Auditivos do Tronco Encefálico/genética , Feminino , Expressão Gênica , Genes Reporter , Terapia Genética , Vetores Genéticos/administração & dosagem , Masculino , Camundongos , Camundongos Knockout , Fenótipo , Transdução Genética , Transgenes
4.
Sci Rep ; 10(1): 4544, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161326

RESUMO

Ex-vivo gene therapy using stem cells or T cells transduced by retroviral or lentiviral vectors has shown remarkable efficacy in the treatment of immunodeficiencies and cancer. However, the process is expensive, technically challenging, and not readily scalable to large patient populations, particularly in underdeveloped parts of the world. Direct in vivo gene therapy would avoid these issues, and such approaches with adeno-associated virus (AAV) vectors have been shown to be safe and efficacious in clinical trials for diseases affecting differentiated tissues such as the liver and CNS. However, the ability to transduce lymphocytes with AAV in vivo after systemic delivery has not been carefully explored. Here, we show that both standard and exosome-associated preparations of AAV8 vectors can effectively transduce a variety of immune cell populations including CD4+ T cells, CD8+ T cells, B cells, macrophages, and dendritic cells after systemic delivery in mice. We provide direct evidence of T cell transduction through the detection of AAV genomes and transgene mRNA, and show that intracellular and transmembrane proteins can be expressed. These findings establish the feasibility of AAV-mediated in vivo gene delivery to immune cells which will facilitate both basic and applied research towards the goal of direct in vivo gene immunotherapies.


Assuntos
Dependovirus/genética , Exossomos/genética , Técnicas de Transferência de Genes , Engenharia Genética , Vetores Genéticos/administração & dosagem , Linfócitos T/metabolismo , Animais , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/citologia , Linfócitos T/virologia , Transdução Genética , Transgenes
5.
Hum Gene Ther ; 30(5): 544-555, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30358470

RESUMO

Mutations in the gene encoding the peroxisomal ATP-binding cassette transporter (ABCD1) cause elevations in very long-chain fatty acids (VLCFAs) and the neurodegenerative disease adrenoleukodystrophy (ALD). In most adults, this manifests as the spinal cord axonopathy adrenomyeloneuropathy (AMN). A challenge in virus-based gene therapy in AMN is how to achieve functional gene correction to the entire spinal cord while minimizing leakage into the systemic circulation, which could contribute to toxicity. In the present study, we used an osmotic pump to deliver adeno-associated viral (AAV) vector into the lumbar cerebrospinal fluid space in mice. We report that slow intrathecal delivery of recombinant AAV serotype 9 (rAAV9) achieves efficient gene transfer across the spinal cord and dorsal root ganglia as demonstrated with two different transgenes, GFP and ABCD1. In the Abcd1-/- mouse, gene correction after continuous rAAV9-CBA-hABCD1 delivery led to a 20% decrease in VLCFA levels in spinal cord compared with controls. The major cell types transduced were astrocytes, vascular endothelial cells, and neurons. Importantly, rAAV9 delivered intrathecally by osmotic pump, in contrast to bolus injection, reduced systemic leakage into peripheral organs, particularly liver and heart tissue.


Assuntos
Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Dependovirus/genética , Técnicas de Transferência de Genes , Terapia Genética , Vetores Genéticos/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Astrócitos/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Fibroblastos/metabolismo , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Injeções Espinhais , Camundongos , Medula Espinal/metabolismo
6.
Mol Ther Methods Clin Dev ; 13: 1-13, 2019 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-30581889

RESUMO

Hereditary hearing loss often results from mutation of genes expressed by cochlear hair cells. Gene addition using AAV vectors has shown some efficacy in mouse models, but clinical application requires two additional advances. First, new AAV capsids must mediate efficient transgene expression in both inner and outer hair cells of the cochlea. Second, to have the best chance of clinical translation, these new vectors must also transduce hair cells in non-human primates. Here, we show that an AAV9 capsid variant, PHP.B, produces efficient transgene expression of a GFP reporter in both inner and outer hair cells of neonatal mice. We show also that AAV9-PHP.B mediates almost complete transduction of inner and outer HCs in a non-human primate. In a mouse model of Usher syndrome type 3A deafness (gene CLRN1), we use AAV9-PHP.B encoding Clrn1 to partially rescue hearing. Thus, we have identified a vector with promise for clinical treatment of hereditary hearing disorders, and we demonstrate, for the first time, viral transduction of the inner ear of a primate with an AAV vector.

7.
Nat Commun ; 10(1): 4439, 2019 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-31570731

RESUMO

Adeno-associated virus (AAV) vectors have shown promising results in preclinical models, but the genomic consequences of transduction with AAV vectors encoding CRISPR-Cas nucleases is still being examined. In this study, we observe high levels of AAV integration (up to 47%) into Cas9-induced double-strand breaks (DSBs) in therapeutically relevant genes in cultured murine neurons, mouse brain, muscle and cochlea. Genome-wide AAV mapping in mouse brain shows no overall increase of AAV integration except at the CRISPR/Cas9 target site. To allow detailed characterization of integration events we engineer a miniature AAV encoding a 465 bp lambda bacteriophage DNA (AAV-λ465), enabling sequencing of the entire integrated vector genome. The integration profile of AAV-465λ in cultured cells display both full-length and fragmented AAV genomes at Cas9 on-target sites. Our data indicate that AAV integration should be recognized as a common outcome for applications that utilize AAV for genome editing.


Assuntos
Sistemas CRISPR-Cas , Quebras de DNA , Dependovirus/genética , Edição de Genes/métodos , Vetores Genéticos , Integração Viral/genética , Animais , Bacteriófago lambda/genética , Encéfalo , Linhagem Celular , Mapeamento Cromossômico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Cóclea , Endonucleases , Marcação de Genes/métodos , Terapia Genética/métodos , Genoma , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Músculos , Neurônios/virologia , Reparo Gênico Alvo-Dirigido/métodos , Resultado do Tratamento
8.
Mol Ther Methods Clin Dev ; 10: 197-209, 2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30109242

RESUMO

Adeno-associated viral vectors (AAVs) have demonstrated potential in applications for neurologic disorders, and the discovery that some AAVs can cross the blood-brain barrier (BBB) after intravenous injection has further expanded these opportunities for non-invasive brain delivery. Anc80L65, a novel AAV capsid designed from in silico reconstruction of the viral evolutionary lineage, has previously demonstrated robust transduction capabilities after local delivery in various tissues such as liver, retina, or cochlea, compared with conventional AAVs. Here, we compared the transduction efficacy of Anc80L65 with conventional AAV9 in the CNS after intravenous, intracerebroventricular (i.c.v.), or intraparenchymal injections. Anc80L65 was more potent at targeting the brain and spinal cord after intravenous injection than AAV9, and mostly transduced astrocytes and a wide range of neuronal subpopulations. Although the efficacy of Anc80L65 and AAV9 is similar after direct intraparenchymal injection in the striatum, Anc80L65's diffusion throughout the CNS was more extensive than AAV9 after i.c.v. infusion, leading to widespread EGFP expression in the cerebellum. These findings demonstrate that Anc80L65 is a highly efficient gene transfer vector for the murine CNS. Systemic injection of Anc80L65 leads to notable expression in the CNS that does not rely on a self-complementary genome. These data warrant further testing in larger animal models.

9.
Mol Ther Nucleic Acids ; 11: 429-440, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29858078

RESUMO

The APPswe (Swedish) mutation in the amyloid precursor protein (APP) gene causes dominantly inherited Alzheimer's disease (AD) as a result of increased ß-secretase cleavage of the amyloid-ß (Aß) precursor protein. This leads to abnormally high Aß levels, not only in brain but also in peripheral tissues of mutation carriers. Here, we selectively disrupted the human mutant APPSW allele using CRISPR. By applying CRISPR/Cas9 from Streptococcus pyogenes, we generated allele-specific deletions of either APPSW or APPWT. As measured by ELISA, conditioned media of targeted patient-derived fibroblasts displayed an approximate 60% reduction in secreted Aß. Next, coding sequences for the APPSW-specific guide RNA (gRNA) and Cas9 were packaged into separate adeno-associated viral (AAV) vectors. Site-specific indel formation was achieved both in primary neurons isolated from APPSW transgenic mouse embryos (Tg2576) and after co-injection of these vectors into hippocampus of adult mice. Taken together, we here present proof-of-concept data that CRISPR/Cas9 can selectively disrupt the APPSW allele both ex vivo and in vivo-and thereby decrease pathogenic Aß. Hence, this system may have the potential to be developed as a tool for gene therapy against AD caused by APPswe and other point mutations associated with increased Aß.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa