Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Cell ; 166(6): 1397-1410.e16, 2016 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-27610566

RESUMO

Whereas domestication of livestock, pets, and crops is well documented, it is still unclear to what extent microbes associated with the production of food have also undergone human selection and where the plethora of industrial strains originates from. Here, we present the genomes and phenomes of 157 industrial Saccharomyces cerevisiae yeasts. Our analyses reveal that today's industrial yeasts can be divided into five sublineages that are genetically and phenotypically separated from wild strains and originate from only a few ancestors through complex patterns of domestication and local divergence. Large-scale phenotyping and genome analysis further show strong industry-specific selection for stress tolerance, sugar utilization, and flavor production, while the sexual cycle and other phenotypes related to survival in nature show decay, particularly in beer yeasts. Together, these results shed light on the origins, evolutionary history, and phenotypic diversity of industrial yeasts and provide a resource for further selection of superior strains. PAPERCLIP.


Assuntos
Cerveja/microbiologia , Microbiologia Industrial , Filogenia , Saccharomyces cerevisiae/classificação , Saccharomyces cerevisiae/fisiologia , Variações do Número de Cópias de DNA/genética , Genes Fúngicos/genética , Variação Genética , Genoma Fúngico/genética , Viabilidade Microbiana/genética , Fenótipo , Ploidias , Saccharomyces cerevisiae/genética , Seleção Genética
2.
EMBO J ; 43(12): 2294-2307, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719995

RESUMO

Organisms rely on mutations to fuel adaptive evolution. However, many mutations impose a negative effect on fitness. Cells may have therefore evolved mechanisms that affect the phenotypic effects of mutations, thus conferring mutational robustness. Specifically, so-called buffer genes are hypothesized to interact directly or indirectly with genetic variation and reduce its effect on fitness. Environmental or genetic perturbations can change the interaction between buffer genes and genetic variation, thereby unmasking the genetic variation's phenotypic effects and thus providing a source of variation for natural selection to act on. This review provides an overview of our understanding of mutational robustness and buffer genes, with the chaperone gene HSP90 as a key example. It discusses whether buffer genes merely affect standing variation or also interact with de novo mutations, how mutational robustness could influence evolution, and whether mutational robustness might be an evolved trait or rather a mere side-effect of complex genetic interactions.


Assuntos
Evolução Molecular , Proteínas de Choque Térmico HSP90 , Mutação , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Seleção Genética , Variação Genética , Humanos , Animais , Aptidão Genética
3.
Int J Mol Sci ; 23(10)2022 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-35628303

RESUMO

Proton radiotherapy (PRT) has the potential to reduce the normal tissue toxicity associated with conventional photon-based radiotherapy (X-ray therapy, XRT) because the active dose can be more directly targeted to a tumor. Although this dosimetric advantage of PRT is well known, the molecular mechanisms affected by PRT remain largely elusive. Here, we combined the molecular toolbox of the eukaryotic model Saccharomyces cerevisiae with a systems biology approach to investigate the physiological effects of PRT compared to XRT. Our data show that the DNA damage response and protein stress response are the major molecular mechanisms activated after both PRT and XRT. However, RNA-Seq revealed that PRT treatment evoked a stronger activation of genes involved in the response to proteotoxic stress, highlighting the molecular differences between PRT and XRT. Moreover, inhibition of the proteasome resulted in decreased survival in combination with PRT compared to XRT, not only further confirming that protons induced a stronger proteotoxic stress response, but also hinting at the potential of using proteasome inhibitors in combination with proton radiotherapy in clinical settings.


Assuntos
Terapia com Prótons , Saccharomyces cerevisiae , Dano ao DNA , Prótons , Radiação Ionizante , Saccharomyces cerevisiae/genética
4.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36232965

RESUMO

The yeast Saccharomyces cerevisiae has been used for bread making and beer brewing for thousands of years. In addition, its ease of manipulation, well-annotated genome, expansive molecular toolbox, and its strong conservation of basic eukaryotic biology also make it a prime model for eukaryotic cell biology and genetics. In this review, we discuss the characteristics that made yeast such an extensively used model organism and specifically focus on the DNA damage response pathway as a prime example of how research in S. cerevisiae helped elucidate a highly conserved biological process. In addition, we also highlight differences in the DNA damage response of S. cerevisiae and humans and discuss the challenges of using S. cerevisiae as a model system.


Assuntos
Fenômenos Biológicos , Saccharomyces cerevisiae , Biologia , Pontos de Checagem do Ciclo Celular , Dano ao DNA , Células Eucarióticas , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
J Proteome Res ; 20(8): 3840-3852, 2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34236875

RESUMO

For yeast cells, tolerance to high levels of ethanol is vital both in their natural environment and in industrially relevant conditions. We recently genotyped experimentally evolved yeast strains adapted to high levels of ethanol and identified mutations linked to ethanol tolerance. In this study, by integrating genomic sequencing data with quantitative proteomics profiles from six evolved strains (data set identifier PXD006631) and construction of protein interaction networks, we elucidate exactly how the genotype and phenotype are related at the molecular level. Our multi-omics approach points to the rewiring of numerous metabolic pathways affected by genomic and proteomic level changes, from energy-producing and lipid pathways to differential regulation of transposons and proteins involved in cell cycle progression. One of the key differences is found in the energy-producing metabolism, where the ancestral yeast strain responds to ethanol by switching to respiration and employing the mitochondrial electron transport chain. In contrast, the ethanol-adapted strains appear to have returned back to energy production mainly via glycolysis and ethanol fermentation, as supported by genomic and proteomic level changes. This work is relevant for synthetic biology where systems need to function under stressful conditions, as well as for industry and in cancer biology, where it is important to understand how the genotype relates to the phenotype.


Assuntos
Proteômica , Saccharomyces cerevisiae , Etanol , Fermentação , Genômica , Saccharomyces cerevisiae/genética
6.
Mol Biol Evol ; 37(10): 2989-3002, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32658971

RESUMO

Loss of gene function is common throughout evolution, even though it often leads to reduced fitness. In this study, we systematically evaluated how an organism adapts after deleting genes that are important for growth under oxidative stress. By evolving, sequencing, and phenotyping over 200 yeast lineages, we found that gene loss can enhance an organism's capacity to evolve and adapt. Although gene loss often led to an immediate decrease in fitness, many mutants rapidly acquired suppressor mutations that restored fitness. Depending on the strain's genotype, some ultimately even attained higher fitness levels than similarly adapted wild-type cells. Further, cells with deletions in different modules of the genetic network followed distinct and predictable mutational trajectories. Finally, losing highly connected genes increased evolvability by facilitating the emergence of a more diverse array of phenotypes after adaptation. Together, our findings show that loss of specific parts of a genetic network can facilitate adaptation by opening alternative evolutionary paths.


Assuntos
Adaptação Biológica/genética , Evolução Biológica , Deleção de Genes , Aptidão Genética , Redes Reguladoras de Genes , Estresse Oxidativo/genética , Saccharomyces cerevisiae
7.
Curr Genet ; 65(3): 721-727, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30666394

RESUMO

When faced with environmental changes, microbes enter a lag phase during which cell growth is arrested, allowing cells to adapt to the new situation. The discovery of the lag phase started the field of gene regulation and led to the unraveling of underlying mechanisms. However, the factors determining the exact duration and dynamics of the lag phase remain largely elusive. Naively, one would expect that cells adapt as quickly as possible, so they can resume growth and compete with other organisms. However, recent studies show that the lag phase can last from several hours up to several days. Moreover, some cells within the same population take much longer than others, despite being genetically identical. In addition, the lag phase duration is also influenced by the past, with recent exposure to a given environment leading to a quicker adaptation when that environment returns. Genome-wide screens in Saccharomyces cerevisiae on carbon source shifts now suggest that the length of the lag phase, the heterogeneity in lag times of individual cells, and the history-dependent behavior are not determined by the time it takes to induce a few specific genes related to uptake and metabolism of a new carbon source. Instead, a major shift in general metabolism, and in particular a switch between fermentation and respiration, is the major bottleneck that determines lag duration. This suggests that there may be a fitness trade-off between complete adaptation of a cell's metabolism to a given environment, and a short lag phase when the environment changes.


Assuntos
Adaptação Fisiológica , Regulação Fúngica da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Carbono/metabolismo , Fermentação , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
8.
PLoS Genet ; 11(11): e1005635, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26545090

RESUMO

Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts.


Assuntos
Adaptação Fisiológica , Etanol/farmacologia , Aneuploidia , Haploidia
9.
Metab Eng ; 43(Pt B): 187-197, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27847310

RESUMO

Mutations in succinate dehydrogenase (SDH) are associated with tumor development and neurodegenerative diseases. Only in tumors, loss of SDH activity is accompanied with the loss of complex I activity. Yet, it remains unknown whether the metabolic phenotype of SDH mutant tumors is driven by loss of complex I function, and whether this contributes to the peculiarity of tumor development versus neurodegeneration. We addressed this question by decoupling loss of SDH and complex I activity in cancer cells and neurons. We found that sole loss of SDH activity was not sufficient to recapitulate the metabolic phenotype of SDH mutant tumors, because it failed to decrease mitochondrial respiration and to activate reductive glutamine metabolism. These metabolic phenotypes were only induced upon the additional loss of complex I activity. Thus, we show that complex I function defines the metabolic differences between SDH mutation associated tumors and neurodegenerative diseases, which could open novel therapeutic options against both diseases.


Assuntos
Complexo I de Transporte de Elétrons , Mutação , Proteínas de Neoplasias , Neoplasias , Succinato Desidrogenase , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo , Humanos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Neoplasias/enzimologia , Neoplasias/genética , Neoplasias/patologia , Neurônios/enzimologia , Neurônios/patologia , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo
10.
Curr Genet ; 62(3): 475-80, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26758993

RESUMO

The brewer's yeast Saccharomyces cerevisiae displays a much higher ethanol tolerance compared to most other organisms, and it is therefore commonly used for the industrial production of bioethanol and alcoholic beverages. However, the genetic determinants underlying this yeast's exceptional ethanol tolerance have proven difficult to elucidate. In this perspective, we discuss how different types of experiments have contributed to our understanding of the toxic effects of ethanol and the mechanisms and complex genetics underlying ethanol tolerance. In a second part, we summarize the different routes and challenges involved in obtaining superior industrial yeasts with improved ethanol tolerance.


Assuntos
Adaptação Biológica , Etanol/metabolismo , Leveduras/fisiologia , Adaptação Biológica/genética , Biocombustíveis , Etanol/farmacologia , Fermentação , Microbiologia Industrial , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/fisiologia , Leveduras/efeitos dos fármacos
11.
PLoS Biol ; 10(12): e1001446, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23239941

RESUMO

Gene duplications are believed to facilitate evolutionary innovation. However, the mechanisms shaping the fate of duplicated genes remain heavily debated because the molecular processes and evolutionary forces involved are difficult to reconstruct. Here, we study a large family of fungal glucosidase genes that underwent several duplication events. We reconstruct all key ancestral enzymes and show that the very first preduplication enzyme was primarily active on maltose-like substrates, with trace activity for isomaltose-like sugars. Structural analysis and activity measurements on resurrected and present-day enzymes suggest that both activities cannot be fully optimized in a single enzyme. However, gene duplications repeatedly spawned daughter genes in which mutations optimized either isomaltase or maltase activity. Interestingly, similar shifts in enzyme activity were reached multiple times via different evolutionary routes. Together, our results provide a detailed picture of the molecular mechanisms that drove divergence of these duplicated enzymes and show that whereas the classic models of dosage, sub-, and neofunctionalization are helpful to conceptualize the implications of gene duplication, the three mechanisms co-occur and intertwine.


Assuntos
Evolução Molecular , Duplicação Gênica , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , alfa-Glucosidases/genética , Aminoácidos/genética , Sítios de Ligação , Proteínas Fúngicas/genética , Dosagem de Genes/efeitos dos fármacos , Duplicação Gênica/efeitos dos fármacos , Genes Duplicados/genética , Glucosídeos/farmacologia , Hidrólise/efeitos dos fármacos , Maltose/metabolismo , Modelos Moleculares , Família Multigênica/genética , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Seleção Genética , Especificidade por Substrato/efeitos dos fármacos
12.
EMBO Rep ; 13(12): 1145-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23070367

RESUMO

Gene duplication stimulates evolutionary innovation as the resulting paralogs acquire mutations that lead to sub- or neofunctionalization. A comprehensive in silico analysis of paralogs in Saccharomyces cerevisiae reveals that duplicates of cell-surface and subtelomeric genes also undergo ectopic recombination, which leads to new chimaeric alleles. Mimicking such intergenic recombination events in the FLO (flocculation) family of cell-surface genes shows that chimaeric FLO alleles confer different adhesion phenotypes than the parental genes. Our results indicate that intergenic recombination between paralogs can generate a large set of new alleles, thereby providing the raw material for evolutionary adaptation and innovation.


Assuntos
Duplicação Gênica/genética , Lectinas de Ligação a Manose/genética , Recombinação Genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Adesão Celular/genética , Evolução Molecular , Regulação Fúngica da Expressão Gênica , Variação Genética , Mutação , Fenótipo , Homologia de Sequência de Aminoácidos
13.
Nucleic Acids Res ; 40(19): 9506-12, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22904077

RESUMO

Genetic transformation is a natural process during which foreign DNA enters a cell and integrates into the genome. Apart from its relevance for horizontal gene transfer in nature, transformation is also the cornerstone of today's recombinant gene technology. Despite its importance, relatively little is known about the factors that determine transformation efficiency. We hypothesize that differences in DNA accessibility associated with nucleosome positioning may affect local transformation efficiency. We investigated the landscape of transformation efficiency at various positions in the Saccharomyces cerevisiae genome and correlated these measurements with nucleosome positioning. We find that transformation efficiency shows a highly significant inverse correlation with relative nucleosome density. This correlation was lost when the nucleosome pattern, but not the underlying sequence was changed. Together, our results demonstrate a novel role for nucleosomes and also allow researchers to predict transformation efficiency of a target region and select spots in the genome that are likely to yield higher transformation efficiency.


Assuntos
Nucleossomos/química , Transformação Genética , Sequência de Bases , DNA Fúngico/química , Saccharomyces cerevisiae/genética
14.
Trends Microbiol ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38493013

RESUMO

The natural process of evolutionary adaptation is often exploited as a powerful tool to obtain microbes with desirable traits. For industrial microbes, evolutionary engineering is often used to generate variants that show increased yields or resistance to stressful industrial environments, thus obtaining superior microbial cell factories. However, even in large populations, the natural supply of beneficial mutations is typically low, which implies that obtaining improved microbes is often time-consuming and inefficient. To overcome this limitation, different techniques have been developed that boost mutation rates. While some of these methods simply increase the overall mutation rate across a genome, others use recent developments in DNA synthesis, synthetic biology, and CRISPR-Cas techniques to control the type and location of mutations. This review summarizes the most important recent developments and methods in the field of evolutionary engineering in model microorganisms. It discusses how both in vitro and in vivo approaches can increase the genetic diversity of the host, with a special emphasis on in vivo techniques for the optimization of metabolic pathways for precision fermentation.

15.
Protein Sci ; 33(4): e4940, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511482

RESUMO

Estrogen receptor α is commonly used in synthetic biology to control the activity of genome editing tools. The activating ligands, estrogens, however, interfere with various cellular processes, thereby limiting the applicability of this receptor. Altering its ligand preference to chemicals of choice solves this hurdle but requires adaptation of unspecified ligand-interacting residues. Here, we provide a solution by combining rational protein design with multi-site-directed mutagenesis and directed evolution of stably integrated variants in Saccharomyces cerevisiae. This method yielded an estrogen receptor variant, named TERRA, that lost its estrogen responsiveness and became activated by tamoxifen, an anti-estrogenic drug used for breast cancer treatment. This tamoxifen preference of TERRA was maintained in mammalian cells and mice, even when fused to Cre recombinase, expanding the mammalian synthetic biology toolbox. Not only is our platform transferable to engineer ligand preference of any steroid receptor, it can also profile drug-resistance landscapes for steroid receptor-targeted therapies.


Assuntos
Estradiol , Receptor alfa de Estrogênio , Animais , Camundongos , Receptor alfa de Estrogênio/genética , Receptor alfa de Estrogênio/química , Receptor alfa de Estrogênio/metabolismo , Estradiol/química , Estradiol/metabolismo , Ligantes , Tamoxifeno/farmacologia , Tamoxifeno/metabolismo , Receptores de Estrogênio/genética , Receptores de Estrogênio/química , Receptores de Estrogênio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Mamíferos
16.
Mol Microbiol ; 86(1): 225-39, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22882838

RESUMO

When grown on solid substrates, different microorganisms often form colonies with very specific morphologies. Whereas the pioneers of microbiology often used colony morphology to discriminate between species and strains, the phenomenon has not received much attention recently. In this study, we use a genome-wide assay in the model yeast Saccharomyces cerevisiae to identify all genes that affect colony morphology. We show that several major signalling cascades, including the MAPK, TORC, SNF1 and RIM101 pathways play a role, indicating that morphological changes are a reaction to changing environments. Other genes that affect colony morphology are involved in protein sorting and epigenetic regulation. Interestingly, the screen reveals only few genes that are likely to play a direct role in establishing colony morphology, with one notable example being FLO11, a gene encoding a cell-surface adhesin that has already been implicated in colony morphology, biofilm formation, and invasive and pseudohyphal growth. Using a series of modified promoters for fine-tuning FLO11 expression, we confirm the central role of Flo11 and show that differences in FLO11 expression result in distinct colony morphologies. Together, our results provide a first comprehensive look at the complex genetic network that underlies the diversity in the morphologies of yeast colonies.


Assuntos
Regulação Fúngica da Expressão Gênica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/genética , Glicoproteínas de Membrana/biossíntese , Glicoproteínas de Membrana/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Transdução de Sinais , Estresse Fisiológico
17.
Appl Environ Microbiol ; 79(23): 7325-33, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24056467

RESUMO

The behavior of yeast cells during industrial processes such as the production of beer, wine, and bioethanol has been extensively studied. In contrast, our knowledge about yeast physiology during solid-state processes, such as bread dough, cheese, or cocoa fermentation, remains limited. We investigated changes in the transcriptomes of three genetically distinct Saccharomyces cerevisiae strains during bread dough fermentation. Our results show that regardless of the genetic background, all three strains exhibit similar changes in expression patterns. At the onset of fermentation, expression of glucose-regulated genes changes dramatically, and the osmotic stress response is activated. The middle fermentation phase is characterized by the induction of genes involved in amino acid metabolism. Finally, at the latest time point, cells suffer from nutrient depletion and activate pathways associated with starvation and stress responses. Further analysis shows that genes regulated by the high-osmolarity glycerol (HOG) pathway, the major pathway involved in the response to osmotic stress and glycerol homeostasis, are among the most differentially expressed genes at the onset of fermentation. More importantly, deletion of HOG1 and other genes of this pathway significantly reduces the fermentation capacity. Together, our results demonstrate that cells embedded in a solid matrix such as bread dough suffer severe osmotic stress and that a proper induction of the HOG pathway is critical for optimal fermentation.


Assuntos
Pão/microbiologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Transcriptoma , Fermentação , Redes e Vias Metabólicas/genética , Estresse Fisiológico
18.
Biochem J ; 448(3): 307-20, 2012 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22957732

RESUMO

PDK1 (phosphoinositide-dependent protein kinase 1) phosphorylates and activates PKA (cAMP-dependent protein kinase) in vitro. Docking of the HM (hydrophobic motif) in the C-terminal tail of the PKA catalytic subunits on to the PIF (PDK1-interacting fragment) pocket of PDK1 is a critical step in this activation process. However, PDK1 regulation of PKA in vivo remains controversial. Saccharomyces cerevisiae contains three PKA catalytic subunits, TPK1, TPK2 and TPK3. We demonstrate that Pkh [PKB (protein kinase B)-activating kinase homologue] protein kinases phosphorylate the activation loop of each Tpk in vivo with various efficiencies. Pkh inactivation reduces the interaction of each catalytic subunit with the regulatory subunit Bcy1 without affecting the specific kinase activity of PKA. Comparative analysis of the in vitro interaction and phosphorylation of Tpks by Pkh1 shows that Tpk1 and Tpk2 interact with Pkh1 through an HM-PIF pocket interaction. Unlike Tpk1, mutagenesis of the activation loop site in Tpk2 does not abolish in vitro phosphorylation, suggesting that Tpk2 contains other, as yet uncharacterized, Pkh1 target sites. Tpk3 is poorly phosphorylated on its activation loop site, and this is due to the weak interaction of Tpk3 with Pkh1 because of the atypical HM found in Tpk3. In conclusion, the results of the present study show that Pkh protein kinases contribute to the divergent regulation of the Tpk catalytic subunits.


Assuntos
Domínio Catalítico/fisiologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Proteína Quinase Tipo I Dependente de AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/enzimologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Motivos de Aminoácidos/fisiologia , Sequência de Aminoácidos , Ativação Enzimática/fisiologia , Isoenzimas/metabolismo , Dados de Sequência Molecular , Mutagênese , Fosforilação/genética
19.
iScience ; 26(12): 108564, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38213791

RESUMO

Although ethanol is a class I carcinogen and is linked to more than 700,000 cancer incidences, a clear understanding of the molecular mechanisms underlying ethanol-related carcinogenesis is still lacking. Further understanding of ethanol-related cell damage can contribute to reducing or treating alcohol-related cancers. Here, we investigated the effects of both short- and long-term exposure of human laryngeal epithelial cells to different ethanol concentrations. RNA sequencing shows that ethanol altered gene expression patterns in a time- and concentration-dependent way, affecting genes involved in ribosome biogenesis, cytoskeleton remodeling, Wnt signaling, and transmembrane ion transport. Additionally, ethanol induced a slower cell proliferation, a delayed cell cycle progression, and replication fork stalling. In addition, ethanol exposure resulted in morphological changes, which could be associated with membrane stress. Taken together, our data yields a comprehensive view of molecular changes associated with ethanol stress in epithelial cells of the upper aerodigestive tract.

20.
J Biol Chem ; 286(25): 22017-27, 2011 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-21531713

RESUMO

Pkh1, -2, and -3 are the yeast orthologs of mammalian 3-phosphoinositide-dependent protein kinase-1 (PDK1). Although essential for viability, their functioning remains poorly understood. Sch9, the yeast protein kinase B and/or S6K ortholog, has been identified as one of their targets. We now have shown that in vitro interaction of Pkh1 and Sch9 depends on the hydrophobic PDK1-interacting fragment pocket in Pkh1 and requires the complementary hydrophobic motif in Sch9. We demonstrated that Pkh1 phosphorylates Sch9 both in vitro and in vivo on its PDK1 site and that this phosphorylation is essential for a wild type cell size. In vivo phosphorylation on this site disappeared during nitrogen deprivation and rapidly increased again upon nitrogen resupplementation. In addition, we have shown here for the first time that the PDK1 site in protein kinase A is phosphorylated by Pkh1 in vitro, that this phosphorylation is Pkh-dependent in vivo and occurs during or shortly after synthesis of the protein kinase A catalytic subunits. Mutagenesis of the PDK1 site in Tpk1 abolished binding of the regulatory subunit and cAMP dependence. As opposed to PDK1 site phosphorylation of Sch9, phosphorylation of the PDK1 site in Tpk1 was not regulated by nitrogen availability. These results bring new insight into the control and prevalence of PDK1 site phosphorylation in yeast by Pkh protein kinases.


Assuntos
Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Animais , Domínio Catalítico , Tamanho Celular , Proteínas Quinases Dependentes de AMP Cíclico/química , Interações Hidrofóbicas e Hidrofílicas , Mutagênese , Nitrogênio/farmacologia , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/biossíntese , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/enzimologia , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa