Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Lab Invest ; 103(8): 100189, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37245852

RESUMO

In multiple sclerosis (MS), demyelination occurs in the cerebral cortex, and cerebral cortex atrophy correlates with clinical disabilities. Treatments are needed in MS to induce remyelination. Pregnancy is protective in MS. Estriol is made by the fetoplacental unit, and maternal serum estriol levels temporally align with fetal myelination. Here, we determined the effect of estriol treatment on the cerebral cortex in the preclinical model of MS, experimental autoimmune encephalomyelitis (EAE). Estriol treatment initiated after disease onset decreased cerebral cortex atrophy. Neuropathology of the cerebral cortex showed increased cholesterol synthesis proteins in oligodendrocytes, more newly formed remyelinating oligodendrocytes, and increased myelin in estriol-treated EAE mice. Estriol treatment also decreased the loss of cortical layer V pyramidal neurons and their apical dendrites and preserved synapses. Together, estriol treatment after EAE onset reduced atrophy and was neuroprotective in the cerebral cortex.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Doenças Neurodegenerativas , Gravidez , Feminino , Camundongos , Animais , Neuroproteção , Encefalomielite Autoimune Experimental/tratamento farmacológico , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Estriol/farmacologia , Estriol/uso terapêutico , Córtex Cerebral/metabolismo , Atrofia/tratamento farmacológico , Atrofia/patologia , Camundongos Endogâmicos C57BL
2.
Proc Natl Acad Sci U S A ; 116(52): 26779-26787, 2019 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-31822606

RESUMO

Many autoimmune diseases are more frequent in females than in males in humans and their mouse models, and sex differences in immune responses have been shown. Despite extensive studies of sex hormones, mechanisms underlying these sex differences remain unclear. Here, we focused on sex chromosomes using the "four core genotypes" model in C57BL/6 mice and discovered that the transcriptomes of both autoantigen and anti-CD3/CD28 stimulated CD4+ T lymphocytes showed higher expression of a cluster of 5 X genes when derived from XY as compared to XX mice. We next determined if higher expression of an X gene in XY compared to XX could be due to parent-of-origin differences in DNA methylation of the X chromosome. We found a global increase in DNA methylation on the X chromosome of paternal as compared to maternal origin. Since DNA methylation usually suppresses gene expression, this result was consistent with higher expression of X genes in XY cells because XY cells always express from the maternal X chromosome. In addition, gene expression analysis of F1 hybrid mice from CAST × FVB reciprocal crosses showed preferential gene expression from the maternal X compared to paternal X chromosome, revealing that these parent-of-origin effects are not strain-specific. SJL mice also showed a parent-of-origin effect on DNA methylation and X gene expression; however, which X genes were affected differed from those in C57BL/6. Together, this demonstrates how parent-of-origin differences in DNA methylation of the X chromosome can lead to sex differences in gene expression during immune responses.

3.
Proc Natl Acad Sci U S A ; 116(20): 10130-10139, 2019 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-31040210

RESUMO

Regional differences in neurons, astrocytes, oligodendrocytes, and microglia exist in the brain during health, and regional differences in the transcriptome may occur for each cell type during neurodegeneration. Multiple sclerosis (MS) is multifocal, and regional differences in the astrocyte transcriptome occur in experimental autoimmune encephalomyelitis (EAE), an MS model. MS and EAE are characterized by inflammation, demyelination, and axonal damage, with minimal remyelination. Here, RNA-sequencing analysis of MS tissues from six brain regions suggested a focus on oligodendrocyte lineage cells (OLCs) in corpus callosum. Olig1-RiboTag mice were used to determine the translatome of OLCs in vivo in corpus callosum during the remyelination phase of a chronic cuprizone model with axonal damage. Cholesterol-synthesis gene pathways dominated as the top up-regulated pathways in OLCs during remyelination. In EAE, remyelination was induced with estrogen receptor-ß (ERß) ligand treatment, and up-regulation of cholesterol-synthesis gene expression was again observed in OLCs. ERß-ligand treatment in the cuprizone model further increased cholesterol synthesis gene expression and enhanced remyelination. Conditional KOs of ERß in OLCs demonstrated that increased cholesterol-synthesis gene expression in OLCs was mediated by direct effects in both models. To address this direct effect, ChIP assays showed binding of ERß to the putative estrogen-response element of a key cholesterol-synthesis gene (Fdps). As fetal OLCs are exposed in utero to high levels of estrogens in maternal blood, we discuss how remyelinating properties of estrogen treatment in adults during injury may recapitulate normal developmental myelination through targeting cholesterol homeostasis in OLCs.


Assuntos
Colesterol/biossíntese , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/metabolismo , Oligodendroglia/metabolismo , Remielinização , Animais , Estudos de Casos e Controles , Cuprizona , Receptor beta de Estrogênio/metabolismo , Feminino , Expressão Gênica , Homeostase , Humanos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Análise de Sequência de RNA
4.
Proc Natl Acad Sci U S A ; 115(2): E302-E309, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29279367

RESUMO

Changes in gene expression that occur across the central nervous system (CNS) during neurological diseases do not address the heterogeneity of cell types from one CNS region to another and are complicated by alterations in cellular composition during disease. Multiple sclerosis (MS) is multifocal by definition. Here, a cell-specific and region-specific transcriptomics approach was used to determine gene expression changes in astrocytes in the most widely used MS model, experimental autoimmune encephalomyelitis (EAE). Astrocyte-specific RNAs from various neuroanatomic regions were attained using RiboTag technology. Sequencing and bioinformatics analyses showed that EAE-induced gene expression changes differed between neuroanatomic regions when comparing astrocytes from spinal cord, cerebellum, cerebral cortex, and hippocampus. The top gene pathways that were changed in astrocytes from spinal cord during chronic EAE involved decreases in expression of cholesterol synthesis genes while immune pathway gene expression in astrocytes was increased. Optic nerve from EAE and optic chiasm from MS also showed decreased cholesterol synthesis gene expression. The potential role of cholesterol synthesized by astrocytes during EAE and MS is discussed. Together, this provides proof-of-concept that a cell-specific and region-specific gene expression approach can provide potential treatment targets in distinct neuroanatomic regions during multifocal neurological diseases.


Assuntos
Astrócitos/fisiologia , Encefalomielite Autoimune Experimental/metabolismo , Esclerose Múltipla/patologia , Transcriptoma/fisiologia , Animais , Colesterol/biossíntese , Regulação para Baixo , Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica , Homeostase/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Regulação para Cima
5.
Mult Scler ; 26(5): 554-560, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31965884

RESUMO

Sex differences in the incidence or severity of disease characterize many autoimmune and neurodegenerative diseases. Multiple sclerosis is a complex disease with both autoimmune and neurodegenerative aspects and is characterized by sex differences in susceptibility and progression. Research in the study sex differences is a way to capitalize on a known clinical observation, mechanistically disentangle it at the laboratory bench, then translate basic research findings back to the clinic as a novel treatment trial tailored to optimally benefit each sex. This "Bedside to Bench to Bedside" approach based on sex differences in MS will be reviewed here, first for disease susceptibility then for disability progression.


Assuntos
Progressão da Doença , Suscetibilidade a Doenças , Esclerose Múltipla , Caracteres Sexuais , Suscetibilidade a Doenças/imunologia , Suscetibilidade a Doenças/metabolismo , Suscetibilidade a Doenças/patologia , Feminino , Humanos , Masculino , Esclerose Múltipla/genética , Esclerose Múltipla/imunologia , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia
6.
Mult Scler ; 26(3): 294-303, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-30843756

RESUMO

BACKGROUND: Gray matter (GM) atrophy in brain is one of the best predictors of long-term disability in multiple sclerosis (MS), and recent findings have revealed that localized GM atrophy is associated with clinical disabilities. GM atrophy associated with each disability mapped to a distinct brain region, revealing a disability-specific atlas (DSA) of GM loss. OBJECTIVE: To uncover the mechanisms underlying the development of localized GM atrophy. METHODS: We used voxel-based morphometry (VBM) to evaluate localized GM atrophy and Clear Lipid-exchanged Acrylamide-hybridized Rigid Imaging-compatible Tissue-hYdrogel (CLARITY) to evaluate specific pathologies in mice with experimental autoimmune encephalomyelitis (EAE). RESULTS: We observed extensive GM atrophy throughout the cerebral cortex, with additional foci in the thalamus and caudoputamen, in mice with EAE compared to normal controls. Next, we generated pathology-specific atlases (PSAs), voxelwise mappings of the correlation between specific pathologies and localized GM atrophy. Interestingly, axonal damage (end-bulbs and ovoids) in the spinal cord strongly correlated with GM atrophy in the sensorimotor cortex of the brain. CONCLUSION: The combination of VBM with CLARITY in EAE can localize GM atrophy in brain that is associated with a specific pathology in spinal cord, revealing a PSA of GM loss.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Substância Cinzenta/patologia , Esclerose Múltipla/patologia , Córtex Sensório-Motor/patologia , Medula Espinal/patologia , Animais , Atrofia/patologia , Encefalomielite Autoimune Experimental/diagnóstico por imagem , Feminino , Substância Cinzenta/diagnóstico por imagem , Hidrogéis , Imageamento por Ressonância Magnética , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/diagnóstico por imagem , Córtex Sensório-Motor/diagnóstico por imagem , Medula Espinal/diagnóstico por imagem
7.
Mult Scler ; 24(1): 22-31, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29307297

RESUMO

BACKGROUND: Why are women more susceptible to multiple sclerosis, but men have worse disability progression? Sex differences in disease may be due to sex hormones, sex chromosomes, or both. OBJECTIVE: Determine whether differences in sex chromosomes can contribute to sex differences in multiple sclerosis using experimental autoimmune encephalomyelitis. METHODS: Sex chromosome transgenic mice, which permit the study of sex chromosomes not confounded by differences in sex hormones, were used to examine an effect of sex chromosomes on autoimmunity and neurodegeneration, focusing on X chromosome genes. RESULTS: T-lymphocyte DNA methylation studies of the X chromosome gene Foxp3 suggested that maternal versus paternal imprinting of X chromosome genes may underlie sex differences in autoimmunity. Bone marrow chimeras with the same immune system but different sex chromosomes in the central nervous system suggested that differential expression of the X chromosome gene Toll-like receptor 7 in neurons may contribute to sex differences in neurodegeneration. CONCLUSION: Mapping the transcriptome and methylome in T lymphocytes and neurons in females versus males could reveal mechanisms underlying sex differences in autoimmunity and neurodegeneration.


Assuntos
Encefalomielite Autoimune Experimental/genética , Impressão Genômica/imunologia , Degeneração Neural/genética , Cromossomos Sexuais/genética , Linfócitos T/imunologia , Animais , Progressão da Doença , Suscetibilidade a Doenças , Encefalomielite Autoimune Experimental/imunologia , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Esclerose Múltipla , Degeneração Neural/imunologia , Neurônios/patologia , Caracteres Sexuais , Cromossomos Sexuais/imunologia
8.
Proc Natl Acad Sci U S A ; 111(7): 2806-11, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24550311

RESUMO

Women are more susceptible to multiple sclerosis (MS) and have more robust immune responses than men. However, men with MS tend to demonstrate a more progressive disease course than women, suggesting a disconnect between the severity of an immune attack and the CNS response to a given immune attack. We have previously shown in an MS model, experimental autoimmune encephalomyelitis, that autoantigen-sensitized XX lymph node cells, compared with XY, are more encephalitogenic. These studies demonstrated an effect of sex chromosomes in the induction of immune responses, but did not address a potential role of sex chromosomes in the CNS response to immune-mediated injury. Here, we examined this possibility using XX versus XY bone marrow chimeras reconstituted with a common immune system of one sex chromosomal type. We found that experimental autoimmune encephalomyelitis mice with an XY sex chromosome complement in the CNS, compared with XX, demonstrated greater clinical disease severity with more neuropathology in the spinal cord, cerebellum, and cerebral cortex. A candidate gene on the X chromosome, toll-like receptor 7, was then examined. Toll-like receptor 7 expression in cortical neurons was higher in mice with XY compared with mice with XX CNS, consistent with the known neurodegenerative role for toll-like receptor 7 in neurons. These results suggest that sex chromosome effects on neurodegeneration in the CNS run counter to effects on immune responses, and may bear relevance to the clinical enigma of greater MS susceptibility in women but faster disability progression in men. This is a demonstration of a direct effect of sex chromosome complement on neurodegeneration in a neurological disease.


Assuntos
Sistema Nervoso Central/fisiopatologia , Encefalomielite Autoimune Experimental/genética , Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica/genética , Degeneração Neural/genética , Cromossomos Sexuais/genética , Análise de Variância , Animais , Transplante de Medula Óssea , Feminino , Imunofluorescência , Hibridização in Situ Fluorescente , Masculino , Camundongos , Degeneração Neural/patologia , Receptor 7 Toll-Like/metabolismo , Quimeras de Transplante
9.
J Neurosci ; 33(26): 10924-33, 2013 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-23804112

RESUMO

Estrogens can signal through either estrogen receptor α (ERα) or ß (ERß) to ameliorate experimental autoimmune encephalomyelitis (EAE), the most widely used mouse model of multiple sclerosis (MS). Cellular targets of estrogen-mediated neuroprotection are still being elucidated. Previously, we demonstrated that ERα on astrocytes, but not neurons, was critical for ERα ligand-mediated neuroprotection in EAE, including decreased T-cell and macrophage inflammation and decreased axonal loss. Here, we determined whether ERß on astrocytes or neurons could mediate neuroprotection in EAE, by selectively removing ERß from either of these cell types using Cre-loxP gene deletion. Our results demonstrated that, even though ERß ligand treatment was neuroprotective in EAE, this neuroprotection was not mediated through ERß on either astrocytes or neurons and did not involve a reduction in levels of CNS inflammation. Given the differential neuroprotective and anti-inflammatory effects mediated via ERα versus ERß on astrocytes, we looked for molecules within astrocytes that were affected by signaling through ERα, but not ERß. We found that ERα ligand treatment, but not ERß ligand treatment, decreased expression of the chemokines CCL2 and CCL7 by astrocytes in EAE. Together, our data show that neuroprotection in EAE mediated via ERß signaling does not require ERß on either astrocytes or neurons, whereas neuroprotection in EAE mediated via ERα signaling requires ERα on astrocytes and reduces astrocyte expression of proinflammatory chemokines. These findings reveal important cellular differences in the neuroprotective mechanisms of estrogen signaling through ERα and ERß in EAE.


Assuntos
Anti-Inflamatórios não Esteroides , Astrócitos/efeitos dos fármacos , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/prevenção & controle , Receptor alfa de Estrogênio/efeitos dos fármacos , Receptor beta de Estrogênio/efeitos dos fármacos , Estrogênios/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores , Transdução de Sinais/efeitos dos fármacos , Animais , Aquaporina 4/fisiologia , Axônios/fisiologia , Contagem de Células , Quimiocina CCL2/genética , Quimiocina CCL2/fisiologia , Quimiocina CCL7/genética , Quimiocina CCL7/fisiologia , Doenças Desmielinizantes/patologia , Gliose/patologia , Imuno-Histoquímica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Medula Espinal/patologia
10.
Proc Natl Acad Sci U S A ; 108(21): 8867-72, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21555578

RESUMO

Estrogen has well-documented neuroprotective effects in a variety of clinical and experimental disorders of the CNS, including autoimmune inflammation, traumatic injury, stroke, and neurodegenerative diseases. The beneficial effects of estrogens in CNS disorders include mitigation of clinical symptoms, as well as attenuation of histopathological signs of neurodegeneration and inflammation. The cellular mechanisms that underlie these CNS effects of estrogens are uncertain, because a number of different cell types express estrogen receptors in the peripheral immune system and the CNS. Here, we investigated the potential roles of two endogenous CNS cell types in estrogen-mediated neuroprotection. We selectively deleted estrogen receptor-α (ERα) from either neurons or astrocytes using well-characterized Cre-loxP systems for conditional gene knockout in mice, and studied the effects of these conditional gene deletions on ERα ligand-mediated neuroprotective effects in a well-characterized model of adoptive experimental autoimmune encephalomyelitis (EAE). We found that the pronounced and significant neuroprotective effects of systemic treatment with ERα ligand on clinical function, CNS inflammation, and axonal loss during EAE were completely prevented by conditional deletion of ERα from astrocytes, whereas conditional deletion of ERα from neurons had no significant effect. These findings show that signaling through ERα in astrocytes, but not through ERα in neurons, is essential for the beneficial effects of ERα ligand in EAE. Our findings reveal a unique cellular mechanism for estrogen-mediated CNS neuroprotective effects by signaling through astrocytes, and have implications for understanding the pathophysiology of sex hormone effects in diverse CNS disorders.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Receptor alfa de Estrogênio/fisiologia , Fármacos Neuroprotetores/farmacologia , Animais , Astrócitos/patologia , Células Cultivadas , Receptor alfa de Estrogênio/deficiência , Inflamação/prevenção & controle , Ligantes , Camundongos , Camundongos Knockout , Doenças Neurodegenerativas/prevenção & controle , Neurônios/patologia
11.
J Neurosci ; 32(36): 12312-24, 2012 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-22956822

RESUMO

Over 50% of multiple sclerosis (MS) patients experience cognitive deficits, and hippocampal-dependent memory impairment has been reported in >30% of these patients. While postmortem pathology studies and in vivo magnetic resonance imaging demonstrate that the hippocampus is targeted in MS, the neuropathology underlying hippocampal dysfunction remains unknown. Furthermore, there are no treatments available to date to effectively prevent neurodegeneration and associated cognitive dysfunction in MS. We have recently demonstrated that the hippocampus is also targeted in experimental autoimmune encephalomyelitis (EAE), the most widely used animal model of MS. The objective of this study was to assess whether a candidate treatment (testosterone) could prevent hippocampal synaptic dysfunction and underlying pathology when administered in either a preventative or a therapeutic (postdisease induction) manner. Electrophysiological studies revealed impairments in basal excitatory synaptic transmission that involved both AMPA receptor-mediated changes in synaptic currents, and faster decay rates of NMDA receptor-mediated currents in mice with EAE. Neuropathology revealed atrophy of the pyramidal and dendritic layers of hippocampal CA1, decreased presynaptic (Synapsin-1) and postsynaptic (postsynaptic density 95; PSD-95) staining, diffuse demyelination, and microglial activation. Testosterone treatment administered either before or after disease induction restores excitatory synaptic transmission as well as presynaptic and postsynaptic protein levels within the hippocampus. Furthermore, cross-modality correlations demonstrate that fluctuations in EPSPs are significantly correlated to changes in postsynaptic protein levels and suggest that PSD-95 is a neuropathological substrate to impaired synaptic transmission in the hippocampus during EAE. This is the first report demonstrating that testosterone is a viable therapeutic treatment option that can restore both hippocampal function and disease-associated pathology that occur during autoimmune disease.


Assuntos
Potenciais Pós-Sinápticos Excitadores/fisiologia , Guanilato Quinases/fisiologia , Hipocampo/metabolismo , Proteínas de Membrana/fisiologia , Polirradiculoneuropatia/tratamento farmacológico , Transmissão Sináptica/fisiologia , Testosterona/administração & dosagem , Animais , Proteína 4 Homóloga a Disks-Large , Implantes de Medicamento , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Polirradiculoneuropatia/metabolismo , Polirradiculoneuropatia/patologia , Distribuição Aleatória , Transmissão Sináptica/efeitos dos fármacos
12.
Front Neuroendocrinol ; 33(1): 105-15, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22209870

RESUMO

Multiple sclerosis (MS) is a disease characterized by inflammation and demyelination. Currently, the cause of MS is unknown. Experimental autoimmune encephalomyelitis (EAE) is the most common mouse model of MS. Treatments with the sex hormones, estrogens and androgens, are capable of offering disease protection during EAE and are currently being used in clinical trials of MS. Beyond endogenous estrogens and androgens, treatments with selective estrogen receptor modulators (SERMs) for estrogen receptor alpha (ERα) and estrogen receptor beta (ERß) are also capable of providing disease protection. This protection includes, but is not limited to, prevention of clinical disease, reduction of CNS inflammation, protection against demyelination, and protection against axonal loss. In EAE, current efforts are focused on using conditional cell specific knockouts of sex hormone receptors to identify the in vivo targets of these estrogens and androgens as well as downstream molecules responsible for disease protection.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Estrogênios/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Animais , Doenças do Sistema Nervoso Central/tratamento farmacológico , Di-Hidrotestosterona/uso terapêutico , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/imunologia , Estradiol/uso terapêutico , Estriol/uso terapêutico , Receptor alfa de Estrogênio/fisiologia , Receptor beta de Estrogênio/fisiologia , Feminino , Humanos , Inflamação/tratamento farmacológico , Masculino , Camundongos , Esclerose Múltipla/imunologia , Gravidez , Moduladores Seletivos de Receptor Estrogênico/uso terapêutico , Especificidade da Espécie , Testosterona/uso terapêutico
13.
J Neurosci Res ; 91(7): 901-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23633287

RESUMO

Multiple sclerosis (MS) is an autoimmune disease characterized by inflammation and neurodegeneration. Current MS treatments were designed to reduce inflammation in MS rather than directly to prevent neurodegeneration. Estrogen has well-documented neuroprotective effects in a variety of disorders of the CNS, including experimental autoimmune encephalomyelitis (EAE), the most widely used mouse model of MS. Treatment with an estrogen receptor-ß (ERß) ligand is known to ameliorate clinical disease effectively and provide neuroprotection in EAE. However, the protective effects of this ERß ligand have been demonstrated only when administered prior to disease (prophylactically). Here we tested whether ERß ligand treatment could provide clinical protection when treatment was initiated after onset of disease (therapeutically). We found that therapeutic treatment effectively ameliorated clinical disease in EAE. Specifically, ERß ligand-treated animals exhibited preserved axons and myelin compared with vehicle-treated animals. We observed no difference in the number of T lymphocytes, macrophages, or microglia in the CNS of vehicle- vs. ERß ligand-treated animals. Our findings show that therapeutically administered ERß ligand successfully treats clinical EAE, bearing translational relevance to MS as a candidate neuroprotective agent.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Nitrilas/uso terapêutico , Propionatos/uso terapêutico , Receptores de Estrogênio/agonistas , Animais , Axônios/efeitos dos fármacos , Doenças Desmielinizantes/etiologia , Doenças Desmielinizantes/prevenção & controle , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/complicações , Feminino , Adjuvante de Freund/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/imunologia , Fragmentos de Peptídeos/imunologia , Índice de Gravidade de Doença
14.
Nat Commun ; 14(1): 6044, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37758709

RESUMO

Menopause is associated with cognitive deficits and brain atrophy, but the brain region and cell-specific mechanisms are not fully understood. Here, we identify a sex hormone by age interaction whereby loss of ovarian hormones in female mice at midlife, but not young age, induced hippocampal-dependent cognitive impairment, dorsal hippocampal atrophy, and astrocyte and microglia activation with synaptic loss. Selective deletion of estrogen receptor beta (ERß) in astrocytes, but not neurons, in gonadally intact female mice induced the same brain effects. RNA sequencing and pathway analyses of gene expression in hippocampal astrocytes from midlife female astrocyte-ERß conditional knock out (cKO) mice revealed Gluconeogenesis I and Glycolysis I as the most differentially expressed pathways. Enolase 1 gene expression was increased in hippocampi from both astrocyte-ERß cKO female mice at midlife and from postmenopausal women. Gain of function studies showed that ERß ligand treatment of midlife female mice reversed dorsal hippocampal neuropathology.


Assuntos
Astrócitos , Receptor beta de Estrogênio , Animais , Feminino , Camundongos , Astrócitos/metabolismo , Encéfalo/metabolismo , Cognição , Receptor beta de Estrogênio/genética , Receptor beta de Estrogênio/metabolismo , Neurônios/metabolismo
15.
Neuroimage ; 60(1): 95-104, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22182769

RESUMO

There are strong correlations between cortical atrophy observed by MRI and clinical disability and disease duration in multiple sclerosis (MS). The objective of this study was to evaluate the progression of cortical atrophy over time in vivo in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model for MS. Volumetric changes in brains of EAE mice and matched healthy controls were quantified by collecting high-resolution T2-weighted magnetic resonance images in vivo and labeling anatomical structures on the images. In vivo scanning permitted us to evaluate brain structure volumes in individual animals over time and we observed that though brain atrophy progressed differently in each individual animal, all mice with EAE demonstrated significant atrophy in whole brain, cerebral cortex, and whole cerebellum compared to normal controls. Furthermore, we found a strong correlation between cerebellar atrophy and cumulative disease score in mice with EAE. Ex vivo MRI showed a significant decrease in brain and cerebellar volume and a trend that did not reach significance in cerebral cortex volume in mice with EAE compared to controls. Cross modality correlations revealed a significant association between neuronal loss on neuropathology and in vivo atrophy of the cerebral cortex by neuroimaging. These results demonstrate that longitudinal in vivo imaging is more sensitive to changes that occur in neurodegenerative disease models than cross-sectional ex vivo imaging. This is the first report of progressive cortical atrophy in vivo in a mouse model of MS.


Assuntos
Cerebelo/patologia , Córtex Cerebral/patologia , Encefalomielite Autoimune Experimental/patologia , Imageamento por Ressonância Magnética , Animais , Atrofia , Camundongos
16.
Lab Invest ; 92(8): 1234-45, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22525427

RESUMO

Cognitive deficits occur in over half of multiple sclerosis patients, with hippocampal-dependent learning and memory commonly impaired. Data from in vivo MRI and post-mortem studies in MS indicate that the hippocampus is targeted. However, the relationship between structural pathology and dysfunction of the hippocampus in MS remains unclear. Hippocampal neuropathology also occurs in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. Although estrogen treatment of EAE has been shown to be anti-inflammatory and neuroprotective in the spinal cord, it is unknown if estrogen treatment may prevent hippocampal pathology and dysfunction. In the current study we examined excitatory synaptic transmission during EAE and focused on pathological changes in synaptic protein complexes known to orchestrate functional synaptic transmission in the hippocampus. We then determined if estriol, a candidate hormone treatment, was capable of preventing functional changes in synaptic transmission and corresponding hippocampal synaptic pathology. Electrophysiological studies revealed altered excitatory synaptic transmission and paired-pulse facilitation (PPF) during EAE. Neuropathological experiments demonstrated that there were decreased levels of pre- and post-synaptic proteins in the hippocampus, diffuse loss of myelin staining and atrophy of the pyramidal layers of hippocampal cornu ammonis 1 (CA1). Estriol treatment prevented decreases in excitatory synaptic transmission and lessened the effect of EAE on PPF. In addition, estriol treatment prevented several neuropathological alterations that occurred in the hippocampus during EAE. Cross-modality correlations revealed that deficits in excitatory synaptic transmission were significantly correlated with reductions in trans-synaptic protein binding partners known to modulate excitatory synaptic transmission. To our knowledge, this is the first report describing a functional correlate to hippocampal neuropathology in any MS model. Furthermore, a treatment was identified that prevented both deficits in synaptic function and hippocampal neuropathology.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/metabolismo , Estriol/farmacologia , Hipocampo/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Animais , Região CA1 Hipocampal/efeitos dos fármacos , Moléculas de Adesão Celular Neuronais/metabolismo , Doenças Desmielinizantes/metabolismo , Proteína 4 Homóloga a Disks-Large , Feminino , Guanilato Quinases/metabolismo , Hipocampo/metabolismo , Histocitoquímica , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Proteínas do Tecido Nervoso/metabolismo
17.
J Neurosci Res ; 90(7): 1310-23, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22411609

RESUMO

Gray matter atrophy is an important correlate to clinical disability in multiple sclerosis (MS), and many treatment trials include atrophy as an outcome measure. Atrophy has been shown to occur in experimental autoimmune encephalomyelitis (EAE), the most commonly used animal model of MS. The clinical severity of EAE is reduced in estrogen-reated mice, but it remains unknown whether estrogen treatment can reduce gray matter atrophy in EAE. In this study, mice with EAE were treated with either estrogen receptor (ER)-α ligand or ER-ß ligand, and diffusion tensor images (DTI) were collected and neuropathology was performed. DTI showed atrophy in the cerebellar gray matter of vehicle-treated EAE mice compared with healthy controls but not in ER-α or ER-ß ligand-treated EAE mice. Neuropathology demonstrated that Purkinje cell numbers were decreased in vehicle-treated EAE mice, whereas neither ER ligand-treated EAE groups showed a decrease. This is the first report of a neuroprotective therapy in EAE that unambiguously prevents gray matter atrophy while sparing a major neuronal cell type. Fractional anisotropy (FA) in the cerebellar white matter was decreased in vehicle- and ER-ß ligand-treated but not in ER-α ligand-treated EAE mice. Inflammatory cell infiltration was increased in vehicle- and ER-ß ligand-treated but not in ER-α ligand-treated EAE mice. Myelin staining was decreased in vehicle-treated EAE mice and was spared in both ER ligand-treated groups. This is consistent with decreased FA as a potential biomarker for inflammation rather than myelination or axonal damage in the cerebellum in EAE.


Assuntos
Encéfalo/patologia , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Estrogênios/farmacologia , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Animais , Atrofia , Encéfalo/efeitos dos fármacos , Modelos Animais de Doenças , Receptor alfa de Estrogênio/agonistas , Receptor beta de Estrogênio/agonistas , Estrogênios/uso terapêutico , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Degeneração Neural/patologia , Fármacos Neuroprotetores/uso terapêutico , Resultado do Tratamento
18.
Ann Rheum Dis ; 71(8): 1418-22, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22580585

RESUMO

OBJECTIVES: Many autoimmune diseases are characterised by a female predominance. This may be caused by sex hormones, sex chromosomes or both. This report uses a transgenic mouse model to investigate how sex chromosome complement, not confounded by differences in gonadal type, might contribute to lupus pathogenesis. METHODS: Transgenic NZM2328 mice were created by deletion of the Sry gene from the Y chromosome, thereby separating genetic from gonadal sex. Survival, renal histopathology and markers of immune activation were compared in mice carrying the XX versus the XY(-) sex chromosome complement, with each genotype being ovary bearing. RESULTS: Mice with XX sex chromosome complement compared with XY(-) exhibited poorer survival rates and increased kidney pathology. Splenic T lymphocytes from XX mice demonstrated upregulated X-linked CD40 ligand expression and higher levels of activation markers ex vivo. Increased MMP, TGF and IL-13 production was found, while IL-2 was lower in XX mice. An accumulation of splenic follicular B cells and peritoneal marginal zone B cells was observed, coupled with upregulated costimulatory marker expression on B cells in XX mice. CONCLUSION: These data show that the XX sex chromosome complement, compared with XY(-), is associated with accelerated spontaneous lupus.


Assuntos
Lúpus Eritematoso Sistêmico/genética , Aberrações dos Cromossomos Sexuais , Transtornos dos Cromossomos Sexuais/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Biomarcadores/metabolismo , Antígenos CD28/imunologia , Complexo CD3/imunologia , Ligante de CD40/metabolismo , Duplicação Cromossômica , Feminino , Rim , Nefropatias , Longevidade , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Baço/imunologia , Linfócitos T/imunologia , Regulação para Cima
19.
Front Mol Neurosci ; 15: 1024058, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340686

RESUMO

Animal models of multiple sclerosis (MS), specifically experimental autoimmune encephalomyelitis (EAE), have been used extensively to develop anti-inflammatory treatments. However, the similarity between MS and one particular EAE model does not end at inflammation. MS and chronic EAE induced in C57BL/6 mice using myelin oligodendrocyte glycoprotein (MOG) peptide 35-55 share many neuropathologies. Beyond both having white matter lesions in spinal cord, both also have widespread neuropathology in the cerebral cortex, hippocampus, thalamus, striatum, cerebellum, and retina/optic nerve. In this review, we compare neuropathologies in each of these structures in MS with chronic EAE in C57BL/6 mice, and find evidence that this EAE model is well suited to study neuroaxonal degeneration in MS.

20.
Brain ; 133(10): 2999-3016, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20858739

RESUMO

Demyelinating diseases, such as multiple sclerosis, are characterized by inflammatory demyelination and neurodegeneration of the central nervous system. Therapeutic strategies that induce effective neuroprotection and enhance intrinsic repair mechanisms are central goals for future therapy of multiple sclerosis. Oestrogens and oestrogen receptor ligands are promising treatments to prevent multiple sclerosis-induced neurodegeneration. In the present study we investigated the capacity of oestrogen receptor ß ligand treatment to affect callosal axon demyelination and stimulate endogenous myelination in chronic experimental autoimmune encephalomyelitis using electrophysiology, electron microscopy, immunohistochemistry and tract-tracing methods. Oestrogen receptor ß ligand treatment of experimental autoimmune encephalomyelitis mice prevented both histopathological and functional abnormalities of callosal axons despite the presence of inflammation. Specifically, there were fewer demyelinated, damaged axons and more myelinated axons with intact nodes of Ranvier in oestrogen receptor ß ligand-treated mice. In addition, oestrogen receptor ß ligand treatment caused an increase in mature oligodendrocyte numbers, a significant increase in myelin sheath thickness and axon transport. Functional analysis of callosal axon conduction showed a significant improvement in compound action potential amplitudes, latency and in axon refractoriness. These findings show a direct neuroprotective effect of oestrogen receptor ß ligand treatment on oligodendrocyte differentiation, myelination and axon conduction during experimental autoimmune encephalomyelitis.


Assuntos
Axônios/efeitos dos fármacos , Corpo Caloso/efeitos dos fármacos , Encefalomielite Autoimune Experimental/tratamento farmacológico , Receptor beta de Estrogênio/agonistas , Bainha de Mielina/efeitos dos fármacos , Degeneração Neural/prevenção & controle , Análise de Variância , Animais , Axônios/patologia , Corpo Caloso/patologia , Corpo Caloso/fisiopatologia , Eletrofisiologia , Encefalomielite Autoimune Experimental/patologia , Encefalomielite Autoimune Experimental/fisiopatologia , Feminino , Imuno-Histoquímica , Camundongos , Camundongos Transgênicos , Microscopia Eletrônica , Bainha de Mielina/patologia , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Índice de Gravidade de Doença
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa