Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sensors (Basel) ; 22(23)2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36501920

RESUMO

Glyphosate is one of the most widely used pesticides, which, together with its primary metabolite aminomethylphosphonic acid, remains present in the environment. Many technologies have been developed to reduce glyphosate amounts in water. Among them, heterogeneous photocatalysis with titanium dioxide as a commonly used photocatalyst achieves high removal efficiency. Nevertheless, glyphosate is often converted to organic intermediates during its degradation. The detection of degraded glyphosate and emerging products is, therefore, an important element of research in terms of disposal methods. Attention is being paid to new sensors enabling the fast detection of glyphosate and its degradation products, which would allow the monitoring of its removal process in real time. The surface plasmon resonance imaging (SPRi) method is a promising technique for sensing emerging pollutants in water. The aim of this work was to design, create, and test an SPRi biosensor suitable for the detection of glyphosate during photolytic and photocatalytic experiments focused on its degradation. Cytochrome P450 and TiO2 were selected as the detection molecules. We developed a sensor for the detection of the target molecules with a low molecular weight for monitoring the process of glyphosate degradation, which could be applied in a flow-through arrangement and thus detect changes taking place in real-time. We believe that SPRi sensing could be widely used in the study of xenobiotic removal from surface water or wastewater.


Assuntos
Herbicidas , Praguicidas , Poluentes Químicos da Água , Herbicidas/análise , Ressonância de Plasmônio de Superfície , Poluentes Químicos da Água/análise , Água
2.
Sensors (Basel) ; 21(3)2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33494497

RESUMO

Water pollution is a serious problem in modern society. Agriculture, being responsible for the discharge of agrochemicals, organic matter, or drug residues, produces a huge amount of wastewater. Aquaponics has the potential to reduce both water consumption and the impact of water pollution on fish farming and plant production. In the aquatic environment, inorganic nitrogen is mostly present in the form of nitrate and ammonium ions. Nitrate, as a final product of ammonia mineralization, is the most common chemical contaminant in aquifers around the world. For continuous monitoring of nitrogen compounds in wastewater, we propose a sensor for the simultaneous detection of nitrate and ammonium. A surface plasmon resonance imaging method with enzyme-mediated detection was used. Active layers of nitrate reductase and glutamine synthetase were created on the gold surface of a biochip and tested for the sensing of nitrate and ammonium in water from an aquaponic system. The proposed sensor was applied in water samples with a concentration of NO3- and NH4+ in a range between 24-780 mg·L-1 and 0.26-120 mg·L-1, respectively, with minimal pretreatment of a sample by its dilution with a buffer prior to contact on a biochip surface.

3.
Molecules ; 25(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172179

RESUMO

Ionic liquids are increasingly used for their superior properties. Four water-immiscible ionic liquids (butyltriethylammonium bis(trifluoromethylsulfonyl)imide, octyltriethylammonium bis(trifluoromethylsulfonyl)imide, dodecyltriethylammonium bis(trifluoromethylsulfonyl)imide, butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide) and their water miscible precursors (bromides) were synthesized in a microwave reactor and by conventional heating. The best conditions for microwave-assisted synthesis concerning the yield and the purity of the product are proposed. The heating in the microwave reactor significantly shortened the reaction time. Biocide and ecotoxic effects of synthesized ionic liquids and their precursors were investigated. All tested compounds had at least a little effect on the growth or living of microorganisms (bacteria or mold). The precursor dodecyltriethylammonium bromide was found to be the strongest biocide, but posed a risk to the aquatic environment due to its relatively high EC50 value in the test with Vibrio fischeri. We assumed that apart from the alkyl chain length, the solubility in water, duration of action, or type of anion can influence the final biocide and ecotoxic effect.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Líquidos Iônicos/síntese química , Líquidos Iônicos/farmacologia , Aliivibrio fischeri/efeitos dos fármacos , Compostos de Amônio/química , Antibacterianos/síntese química , Antifúngicos/síntese química , Antifúngicos/química , Avaliação Pré-Clínica de Medicamentos/métodos , Ecotoxicologia/métodos , Imidazóis/química , Micro-Ondas , Compostos de Amônio Quaternário/síntese química , Compostos de Amônio Quaternário/farmacologia
4.
J Exp Bot ; 66(15): 4621-30, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26002974

RESUMO

The initiation of stomata, microscopic valves in the epidermis of higher plants that control of gas exchange, requires a co-ordinated sequence of asymmetric and symmetric divisions, which is under tight environmental and developmental control. Arabidopsis leaves grown under elevated photosynthetic photon flux density have a higher density of stomata. STOMAGEN encodes an epidermal patterning factor produced in the mesophyll, and our observations indicated that elevated photosynthetic irradiation stimulates STOMAGEN expression. Our analysis of gain and loss of function of STOMAGEN further detailed its function as a positive regulator of stomatal formation on both sides of the leaf, not only in terms of stomatal density across the leaf surface but also in terms of their stomatal index. STOMAGEN function was rate limiting for the light response of the stomatal lineage in the adaxial epidermis. Mutants in pathways that regulate stomatal spacing in the epidermis and have elevated stomatal density, such as stomatal density and distribution (sdd1) and too many mouth alleles, displayed elevated STOMAGEN expression, suggesting that STOMAGEN is either under the direct control of these pathways or is indirectly affected by stomatal patterning, suggestive of a feedback mechanism. These observations support a model in which changes in levels of light irradiation are perceived in the mesophyll and control the production of stomata in the epidermis by mesophyll-produced STOMAGEN, and whereby, conversely, stomatal patterning, either directly or indirectly, influences STOMAGEN levels.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Luz , Fotossíntese , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/genética , Estômatos de Plantas/crescimento & desenvolvimento , Estômatos de Plantas/metabolismo , Estômatos de Plantas/efeitos da radiação , Transdução de Sinais
5.
Ann Bot ; 114(2): 191-202, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24825295

RESUMO

BACKGROUND AND AIMS: Stomatal density (SD) generally decreases with rising atmospheric CO2 concentration, Ca. However, SD is also affected by light, air humidity and drought, all under systemic signalling from older leaves. This makes our understanding of how Ca controls SD incomplete. This study tested the hypotheses that SD is affected by the internal CO2 concentration of the leaf, Ci, rather than Ca, and that cotyledons, as the first plant assimilation organs, lack the systemic signal. METHODS: Sunflower (Helianthus annuus), beech (Fagus sylvatica), arabidopsis (Arabidopsis thaliana) and garden cress (Lepidium sativum) were grown under contrasting environmental conditions that affected Ci while Ca was kept constant. The SD, pavement cell density (PCD) and stomatal index (SI) responses to Ci in cotyledons and the first leaves of garden cress were compared. (13)C abundance (δ(13)C) in leaf dry matter was used to estimate the effective Ci during leaf development. The SD was estimated from leaf imprints. KEY RESULTS: SD correlated negatively with Ci in leaves of all four species and under three different treatments (irradiance, abscisic acid and osmotic stress). PCD in arabidopsis and garden cress responded similarly, so that SI was largely unaffected. However, SD and PCD of cotyledons were insensitive to Ci, indicating an essential role for systemic signalling. CONCLUSIONS: It is proposed that Ci or a Ci-linked factor plays an important role in modulating SD and PCD during epidermis development and leaf expansion. The absence of a Ci-SD relationship in the cotyledons of garden cress indicates the key role of lower-insertion CO2 assimilation organs in signal perception and its long-distance transport.


Assuntos
Dióxido de Carbono/farmacologia , Estômatos de Plantas/citologia , Arabidopsis/citologia , Arabidopsis/efeitos dos fármacos , Contagem de Células , Cotilédone/efeitos dos fármacos , Cotilédone/fisiologia , Desidratação , Meio Ambiente , Fagus/citologia , Fagus/efeitos dos fármacos , Helianthus/citologia , Helianthus/efeitos dos fármacos , Lepidium/citologia , Lepidium/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos
6.
Sci Total Environ ; 915: 169818, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38184247

RESUMO

Sewage sludge is a valuable source of elements such as phosphorus and nitrogen. At the same time, heavy metals, emerging organic compounds, micropollutants (pharmaceuticals, pesticides, PCPs, microplastics), or some potentially dangerous bacteria can be present. In this study, the sewage sludge was aerobically treated by composting with other materials (co-composted), and the resulting substrate was tested for suitability of its use in agriculture. Closer attention was focused on the pharmaceuticals (non-steroidal antiphlogistics, sartanes, antiepileptics, caffeine, and nicotine metabolites) content and ecotoxicity of the resulting substrates in the individual phases of sludge co-composting. It has been verified that during co-composting there is a potential for reduction of the content of pharmaceutical in the substrates up to 90 %. The course of the temperature in the thermophilic phase is decisive. Growth and ecotoxicity experiments demonstrated that with a suitable co-composting procedure, the resulting stabilized matter is suitable as a substrate for use in plant production, and the risk of using sewage sludge on agricultural land is substantially reduced.


Assuntos
Compostagem , Esgotos/química , Solo/química , Plásticos , Tecnologia , Preparações Farmacêuticas
7.
Chemosphere ; 312(Pt 1): 137165, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36356810

RESUMO

Well-known methods for measuring permeability of membranes include static or flow diffusion chambers. When studying the effects of organic compounds on plants, the use of such model systems allows to investigate xenobiotic behavior at the cuticular barrier level and obtain an understanding of the initial penetration processes of these substances into plant leaves. However, the use of diffusion chambers has disadvantages, including being time-consuming, requiring sampling, or a sufficiently large membrane area, which cannot be obtained from all types of plants. Therefore, we propose a new method based on surface plasmon resonance imaging (SPRi) to enable rapid membrane permeability evaluation. This study presents the methodology for measuring permeability of isolated cuticles for organic compounds via surface plasmon resonance detection, where the selected model analyte was the widely used pesticide metazachlor. Experiments were performed on the cuticles of Ficus elastica, Citrus pyriformis, and an artificial PES membrane, which is used in passive samplers for the detection of xenobiotics in water and soils. The average permeability for metazachlor was 5.23 × 10-14 m2 s-1 for C. pyriformis, 1.34 × 10-13 m2 s-1 for F. elastica, and 7.74 × 10-12 m2 s-1 for the PES membrane. We confirmed that the combination of a flow-through diffusion cell and real-time optical detection of transposed molecules represents a promising method for determining the permeability of membranes to xenobiotics occurring in the environment. This is necessary for determining a pesticide dosage in agriculture, selecting suitable membranes for passive samplers in analytics, testing membranes for water treatment, or studying material use of impregnated membranes.


Assuntos
Praguicidas , Epiderme Vegetal , Epiderme Vegetal/metabolismo , Ressonância de Plasmônio de Superfície , Borracha , Compostos Orgânicos/metabolismo , Permeabilidade , Plantas/metabolismo , Praguicidas/metabolismo
8.
ScientificWorldJournal ; 2012: 705872, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22701368

RESUMO

We explored ability of reflectance vegetation indexes (VIs) related to chlorophyll fluorescence emission (R686/R630, R740/R800) and de-epoxidation state of xanthophyll cycle pigments (PRI, calculated as (R531- R570)/(R531-R570) to track changes in the CO2 assimilation rate and Light Use Efficiency (LUE) in montane grassland and Norway spruce forest ecosystems, both at leaf and also canopy level. VIs were measured at two research plots using a ground-based high spatial/spectral resolution imaging spectroscopy technique. No significant relationship between VIs and leaf light-saturated CO2 assimilation (A(MAX)) was detected in instantaneous measurements of grassland under steady-state irradiance conditions. Once the temporal dimension and daily irradiance variation were included into the experimental setup, statistically significant changes in VIs related to tested physiological parameters were revealed. ΔPRI and Δ(R686/R630) of grassland plant leaves under dark-to-full sunlight transition in the scale of minutes were significantly related to A(MAX) (R² = 0.51). In the daily course, the variation of VIs measured in one-hour intervals correlated well with the variation of Gross Primary Production (GPP), Net Ecosystem Exchange (NEE), and LUE estimated via the eddy-covariance flux tower. Statistical results were weaker in the case of the grassland ecosystem, with the strongest statistical relation of the index R686/R630 with NEE and GPP.


Assuntos
Ciclo do Carbono/fisiologia , Clorofila/análise , Fotossíntese/fisiologia , Picea/fisiologia , Componentes Aéreos da Planta/fisiologia , Poaceae/fisiologia , Espectrometria de Fluorescência , Clima
9.
New Phytol ; 192(1): 188-199, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21627666

RESUMO

• Heterotrophic acquisition of substantial amounts of organic carbon by hemiparasitic plants was clearly demonstrated by numerous studies. Many hemiparasites are, however, also limited by competition for light preventing the establishment of their populations on highly productive sites. • In a growth-chamber experiment, we investigated the effects of competition for light, simulated by shading, on growth and heterotrophic carbon acquisition by the hemiparasite Rhinanthus alectorolophus attached to C(3) and C(4) hosts using analyses of biomass production and stable isotopes of carbon. • Shading had a detrimental effect on biomass production and vertical growth of the hemiparasites shaded from when they were seedlings, while shading imposed later caused only a moderate decrease of biomass production and had no effect on the height. Moreover, shading increased the proportion of host-derived carbon in hemiparasite biomass (up to 50% in shaded seedlings). • These results demonstrate that host-derived carbon can play a crucial role in carbon budget of hemiparasites, especially if they grow in a productive environment with intense competition for light. The heterotrophic carbon acquisition can allow hemiparasite establishment in communities of moderate productivity, helping well-attached hemiparasites to escape from the critical seedling stage.


Assuntos
Carbono/metabolismo , Ecossistema , Processos Heterotróficos/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Orobanchaceae/fisiologia , Plântula/crescimento & desenvolvimento , Análise de Variância , Biomassa , Isótopos de Carbono , Processos Heterotróficos/efeitos da radiação , Marcação por Isótopo , Luz , Modelos Lineares , Nitrogênio/metabolismo , Orobanchaceae/crescimento & desenvolvimento , Orobanchaceae/efeitos da radiação , Fotossíntese/efeitos da radiação , Plântula/efeitos da radiação , Especificidade da Espécie , Zea mays/parasitologia , Zea mays/efeitos da radiação
10.
Plant Sci ; 310: 110978, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315594

RESUMO

The cuticle forms an effective barrier protecting plants from water loss. Its permeability to water and other compounds significantly differs between species, types of cuticle (stomatous, astomatous), and can be affected by a wide variety of ambient conditions. Enzymatic isolation of the leaf cuticle allows obtaining intact cuticles for permeability measurements. However, the most available gravimetric method, which is used for the assessment of water permeability of isolated cuticles, requires a relatively large area of the cuticle and does not allow the determination of membrane heterogeneity. We propose a new method for the determination of water permeance based on an on-line detection of water flux from a liquid phase to the atmosphere through isolated leaf cuticles in semi-flow chambers. This approach is new in using the phenomenon of surface plasmon resonance for the detection of the liquid phase refractive index affected by water vapor. Isolated cuticles of the leaves of Ficus elastica and an artificial polyethersulfone membrane were used for method evaluation. The composition of cuticular wax and its influence on cuticular permeability was also studied. It has been confirmed that the application of the surface plasmon resonance principle can be used for the assessment of leaf cuticle water permeability and heterogeneity.


Assuntos
Ficus/química , Ficus/metabolismo , Ressonância de Plasmônio de Superfície/métodos , Ceras/química , Ceras/metabolismo
11.
Bioresour Technol ; 309: 123315, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32315914

RESUMO

Japanese knotweed (JK) is considered one of the most problematic invasive plants. Great attention was paid to research any possibilities of reducing its occurrence. This work deals with possibilities of easy transformation of JK into carbon adsorbent (AC), which is usable for sorption of diclofenac and paracetamol. Activated carbons were prepared by microwave heating using H3PO4, NaOH and sodium methanolate as the chemical agents. Characterization of AC's was carried out using BET, ATR-FTIR, SEM, adsorption equilibrium and kinetics experiments. The pseudo-second-order model showed the best similarity criteria for all studied systems adsorbent/adsorbate. The sorption efficiency was influenced by the choice of activating agent, where the π-π interactions between the planes of the obtained adsorbent and the aromatic rings of adsorbate and the interactions between the adsorbate and AC functional groups of the surface played an important role. AC-H3PO4 exhibited highest adsorption capacity for both diclofenac (87.09 mg.g-1) and paracetamol (136.61 mg.g-1).


Assuntos
Carvão Vegetal , Poluentes Químicos da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Água , Xenobióticos
12.
Plant Methods ; 16: 129, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32973915

RESUMO

BACKGROUND: The plant cuticle represents one of the major adaptations of vascular plants to terrestrial life. Cuticular permeability and chemical composition differ among species. Arabidopsis thaliana is a widely used model for biochemical and molecular genetic studies in plants. However, attempts to isolate the intact cuticle from fresh leaves of Arabidopsis have failed so far. The goal of this study was to optimise an enzymatic method for cuticle isolation of species with a thin cuticle and to test it on several A. thaliana wild types and mutants. RESULTS: We developed a method for isolation of thin cuticles that allows reducing the isolation time, the separation of abaxial and adaxial cuticles, and avoids formation of wrinkles. Optical microscopy was used for studying cuticle intactness and scanning electron microscopy for visualisation of external and internal cuticle structures after isolation. Wax extracts were analysed by GC-MS. Isolation of intact cuticle was successful for all tested plants. The wax compositions (very-long-chained fatty acids, alcohols and alkanes) of intact leaves and isolated cuticles of wild type Col-0 were compared. CONCLUSIONS: We conclude that the optimised enzymatic method is suitable for the isolation of A. thaliana adaxial and abaxial cuticles. The isolated cuticles are suitable for microscopic observation. Analysis of wax composition revealed some discrepancies between isolated cuticles and intact leaves with a higher yield of wax in isolated cuticles.

13.
J Plant Physiol ; 227: 56-65, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29606360

RESUMO

The study aims to assess variability in leaf water isotopic enrichment occurring in the field under natural conditions. We focused on seasonal variation and difference between sun-exposed and shaded leaves. Isotopic composition (δ18O, δ2H) of leaf water was monitored in a beech tree (Fagus sylvatica L.) growing in the forest-meadow ecotone together with δ18O (2H) of water compartments which are in close relation to this signal, namely twig and soil water. The sampling was carried out in approximately two-week intervals during five consecutive vegetation seasons. The δ18O (2H) data showed a distinct seasonal pattern and a consistency in relative differences between the seasons and sample categories. Leaf water was the most isotopically enriched water compartment. The leaf water enrichment decreased toward the autumn reflecting the change in δ18O (2H) of source water and evaporative demands. The soil and twig water isotopic signal was depleted against current precipitation as it partly retained the isotopic signature from winter precipitation however the seasonal pattern of soil and twig water followed that of precipitation. No significant differences between sun-exposed and shaded samples were detected. Nevertheless, the observed strong seasonal pattern of isotope composition of leaf, twig and soil water should be taken into account when using leaf water enrichment for further calculations or modeling.


Assuntos
Deutério/análise , Fagus/metabolismo , Isótopos de Oxigênio/análise , Folhas de Planta/química , Água/metabolismo , Deutério/metabolismo , Fagus/química , Fagus/fisiologia , Isótopos de Oxigênio/metabolismo , Folhas de Planta/metabolismo , Estações do Ano , Luz Solar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa