Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neuroimage ; 93 Pt 1: 95-106, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24607447

RESUMO

During the last five years ultra-high-field magnetic resonance imaging (MRI) has enabled an unprecedented view of living human brain. Brain tissue contrast in most MRI sequences is known to reflect mainly the spatial distributions of myelin and iron. These distributions have been shown to overlap significantly in many brain regions, especially in the cortex. It is of increasing interest to distinguish and identify cortical areas by their appearance in MRI, which has been shown to be feasible in vivo. Parcellation can benefit greatly from quantification of the independent contributions of iron and myelin to MRI contrast. Recent studies using susceptibility mapping claim to allow such a separation of the effects of myelin and iron in MRI. We show, using post-mortem human brain tissue, that this goal can be achieved. After MRI scanning of the block with appropriate T1 mapping and T2* weighted sequences, we section the block and apply a novel technique, proton induced X-ray emission (PIXE), to spatially map iron, phosphorus and sulfur elemental concentrations, simultaneously with 1µm spatial resolution. Because most brain phosphorus is located in myelin phospholipids, a calibration step utilizing element maps of sulfur enables semi-quantitative ex vivo mapping of myelin concentration. Combining results for iron and myelin concentration in a linear model, we have accurately modeled MRI tissue contrasts. Conversely, iron and myelin concentrations can now be estimated from appropriate MRI measurements in post-mortem brain samples.


Assuntos
Química Encefálica , Ferro/análise , Proteínas da Mielina/análise , Idoso , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade
2.
Hum Brain Mapp ; 35(9): 4440-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24596026

RESUMO

The subthalamic nucleus (STN) is an important node of the cortico-basal ganglia network and the main target of deep brain stimulation (DBS) in Parkinson's disease. Histological studies have revealed an inhomogeneous iron distribution within the STN, which has been related to putative subdivisions within this nucleus. Here, we investigate the iron distribution in more detail using quantitative susceptibility mapping (QSM), a novel magnetic resonance imaging (MRI) contrast mechanism. QSM allows for detailed assessment of iron content in both in vivo and postmortem tissue. Twelve human participants and 7 postmortem brain samples containing the STN were scanned using ultra-high field 7 Tesla (T) MRI. Iron concentrations were found to be higher in the medial-inferior tip of the STN. Using quantitative methods we show that the increase of iron concentration towards the medial-inferior tip is of a gradual rather than a discrete nature.


Assuntos
Ferro/metabolismo , Núcleo Subtalâmico/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa