Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 162(2): 456-456.e1, 2015 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-26186196

RESUMO

Numerous mechanisms exploit or modulate the conformational/compositional dynamics of spliceosomes to regulate splicing. The majority of higher eukaryotic protein-coding genes contain more than one intron and the derived pre-mRNAs can be alternatively spliced. Diverse principles ensure the reliable identification of authentic splice sites while concomitantly providing flexibility in splice site choice during alternative splicing. Some species contain a second type of minor (U12-type) spliceosome.


Assuntos
Splicing de RNA , Spliceossomos/metabolismo , Animais , Humanos , Ribonucleoproteínas/metabolismo , Spliceossomos/química
2.
Cell ; 162(3): 690-690.e1, 2015 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232231

RESUMO

The complex compositional and conformational dynamics of spliceosomes required for regulated splicing are prone to malfunction when mutations affect splicing factors or cis-acting regulatory sequences. Indeed, many such mutations have been linked to heritable diseases or malignancies in humans. Small molecule modulators and antisense oligonucleotides or analogs harbor great potential for therapies and several substances that can modulate splicing events have entered clinical trials.


Assuntos
Doença/genética , Mutação , Spliceossomos/metabolismo , Animais , Humanos , Sítios de Splice de RNA , Splicing de RNA , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Spliceossomos/genética
3.
Cell ; 161(6): 1474-e1, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26046445

RESUMO

Spliceosomes are multi-megadalton RNA-protein molecular machines that carry out pre-mRNA splicing, that is, the removal of non-coding intervening sequences (introns) from eukaryotic pre-mRNAs and the ligation of neighboring coding regions (exons) to produce mature mRNA for protein biosynthesis on the ribosome. They are the prototypes of dynamic molecular machines, assembling de novo for each splicing event by the stepwise recruitment of subunits on a substrate.


Assuntos
Doença/genética , Splicing de RNA , Spliceossomos/metabolismo , Leveduras/metabolismo , Animais , Humanos , Leveduras/genética
4.
Mol Cell ; 79(6): 1024-1036.e5, 2020 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-32871103

RESUMO

Bacterial ribosomal RNAs are synthesized by a dedicated, conserved transcription-elongation complex that transcribes at high rates, shields RNA polymerase from premature termination, and supports co-transcriptional RNA folding, modification, processing, and ribosomal subunit assembly by presently unknown mechanisms. We have determined cryo-electron microscopy structures of complete Escherichia coli ribosomal RNA transcription elongation complexes, comprising RNA polymerase; DNA; RNA bearing an N-utilization-site-like anti-termination element; Nus factors A, B, E, and G; inositol mono-phosphatase SuhB; and ribosomal protein S4. Our structures and structure-informed functional analyses show that fast transcription and anti-termination involve suppression of NusA-stabilized pausing, enhancement of NusG-mediated anti-backtracking, sequestration of the NusG C-terminal domain from termination factor ρ, and the ρ blockade. Strikingly, the factors form a composite RNA chaperone around the RNA polymerase RNA-exit tunnel, which supports co-transcriptional RNA folding and annealing of distal RNA regions. Our work reveals a polymerase/chaperone machine required for biosynthesis of functional ribosomes.


Assuntos
RNA Polimerases Dirigidas por DNA/genética , Chaperonas Moleculares/genética , Proteínas Ribossômicas/genética , Ribossomos/genética , Sítios de Ligação/genética , Microscopia Crioeletrônica , Escherichia coli/genética , Escherichia coli/ultraestrutura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/ultraestrutura , Monoéster Fosfórico Hidrolases/genética , Monoéster Fosfórico Hidrolases/ultraestrutura , Biossíntese de Proteínas/genética , Dobramento de RNA/genética , RNA Ribossômico/genética , RNA Ribossômico/ultraestrutura , Proteínas Ribossômicas/ultraestrutura , Ribossomos/ultraestrutura , Fatores de Elongação da Transcrição/química , Fatores de Elongação da Transcrição/genética , Fatores de Elongação da Transcrição/ultraestrutura
5.
Mol Cell ; 78(1): 57-69.e4, 2020 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-32059760

RESUMO

Homeothermic organisms maintain their core body temperature in a narrow, tightly controlled range. Whether and how subtle circadian oscillations or disease-associated changes in core body temperature are sensed and integrated in gene expression programs remain elusive. Furthermore, a thermo-sensor capable of sensing the small temperature differentials leading to temperature-dependent sex determination (TSD) in poikilothermic reptiles has not been identified. Here, we show that the activity of CDC-like kinases (CLKs) is highly responsive to physiological temperature changes, which is conferred by structural rearrangements within the kinase activation segment. Lower body temperature activates CLKs resulting in strongly increased phosphorylation of SR proteins in vitro and in vivo. This globally controls temperature-dependent alternative splicing and gene expression, with wide implications in circadian, tissue-specific, and disease-associated settings. This temperature sensor is conserved across evolution and adapted to growth temperatures of diverse poikilotherms. The dynamic temperature range of reptilian CLK homologs suggests a role in TSD.


Assuntos
Processamento Alternativo , Regulação da Temperatura Corporal/genética , Expressão Gênica , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Répteis/genética , Animais , Evolução Biológica , Células HEK293 , Humanos , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/fisiologia , Répteis/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo
6.
Mol Cell ; 74(1): 143-157.e5, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30795892

RESUMO

Bacteriophage λN protein, a model anti-termination factor, binds nascent RNA and host Nus factors, rendering RNA polymerase resistant to all pause and termination signals. A 3.7-Å-resolution cryo-electron microscopy structure and structure-informed functional analyses reveal a multi-pronged strategy by which the intrinsically unstructured λN directly modifies RNA polymerase interactions with the nucleic acids and subverts essential functions of NusA, NusE, and NusG to reprogram the transcriptional apparatus. λN repositions NusA and remodels the ß subunit flap tip, which likely precludes folding of pause or termination RNA hairpins in the exit tunnel and disrupts termination-supporting interactions of the α subunit C-terminal domains. λN invades and traverses the RNA polymerase hybrid cavity, likely stabilizing the hybrid and impeding pause- or termination-related conformational changes of polymerase. λN also lines upstream DNA, seemingly reinforcing anti-backtracking and anti-swiveling by NusG. Moreover, λN-repositioned NusA and NusE sequester the NusG C-terminal domain, counteracting ρ-dependent termination. Other anti-terminators likely utilize similar mechanisms to enable processive transcription.


Assuntos
Bacteriófago lambda/metabolismo , Escherichia coli/metabolismo , RNA Bacteriano/biossíntese , Fatores de Transcrição/metabolismo , Terminação da Transcrição Genética , Proteínas Virais Reguladoras e Acessórias/metabolismo , Bacteriófago lambda/genética , Sítios de Ligação , Microscopia Crioeletrônica , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli/genética , Escherichia coli/virologia , Regulação Bacteriana da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , RNA Bacteriano/química , RNA Bacteriano/genética , Relação Estrutura-Atividade , Fatores de Transcrição/química , Fatores de Transcrição/genética , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética
7.
Mol Microbiol ; 119(2): 191-207, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36349475

RESUMO

Streptococcus pneumoniae has to cope with the strong oxidant hypochlorous acid (HOCl), during host-pathogen interactions. Thus, we analyzed the global gene expression profile of S. pneumoniae D39 towards HOCl stress. In the RNA-seq transcriptome, the NmlR, SifR, CtsR, HrcA, SczA and CopY regulons and the etrx1-ccdA1-msrAB2 operon were most strongly induced under HOCl stress, which participate in the oxidative, electrophile and metal stress response in S. pneumoniae. The MerR-family regulator NmlR harbors a conserved Cys52 and controls the alcohol dehydrogenase-encoding adhC gene under carbonyl and NO stress. We demonstrated that NmlR senses also HOCl stress to activate transcription of the nmlR-adhC operon. HOCl-induced transcription of adhC required Cys52 of NmlR in vivo. Using mass spectrometry, NmlR was shown to be oxidized to intersubunit disulfides or S-glutathionylated under oxidative stress in vitro. A broccoli-FLAP-based assay further showed that both NmlR disulfides significantly increased transcription initiation at the nmlR promoter by RNAP in vitro, which depends on Cys52. Phenotype analyses revealed that NmlR functions in the defense against oxidative stress and promotes survival of S. pneumoniae during macrophage infections. In conclusion, NmlR was characterized as HOCl-sensing transcriptional regulator, which activates transcription of adhC under oxidative stress by thiol switches in S. pneumoniae.


Assuntos
Estresse Oxidativo , Streptococcus pneumoniae , Streptococcus pneumoniae/metabolismo , Regiões Promotoras Genéticas , Transcriptoma , Regulon , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
8.
Cell ; 136(4): 701-18, 2009 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-19239890

RESUMO

Ribonucleoproteins (RNPs) mediate key cellular functions such as gene expression and its regulation. Whereas most RNP enzymes are stable in composition and harbor preformed active sites, the spliceosome, which removes noncoding introns from precursor messenger RNAs (pre-mRNAs), follows fundamentally different strategies. In order to provide both accuracy to the recognition of reactive splice sites in the pre-mRNA and flexibility to the choice of splice sites during alternative splicing, the spliceosome exhibits exceptional compositional and structural dynamics that are exploited during substrate-dependent complex assembly, catalytic activation, and active site remodeling.


Assuntos
Splicing de RNA , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Spliceossomos/química , Spliceossomos/metabolismo , Animais , Humanos , Sítios de Splice de RNA
9.
Nucleic Acids Res ; 50(5): 2938-2958, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-35188580

RESUMO

Biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) and their recycling after splicing require numerous assembly/recycling factors whose modes of action are often poorly understood. The intrinsically disordered TSSC4 protein has been identified as a nuclear-localized U5 snRNP and U4/U6-U5 tri-snRNP assembly/recycling factor, but how TSSC4's intrinsic disorder supports TSSC4 functions remains unknown. Using diverse interaction assays and cryogenic electron microscopy-based structural analysis, we show that TSSC4 employs four conserved, non-contiguous regions to bind the PRPF8 Jab1/MPN domain and the SNRNP200 helicase at functionally important sites. It thereby inhibits SNRNP200 helicase activity, spatially aligns the proteins, coordinates formation of a U5 sub-module and transiently blocks premature interaction of SNRNP200 with at least three other spliceosomal factors. Guided by the structure, we designed a TSSC4 variant that lacks stable binding to the PRPF8 Jab1/MPN domain or SNRNP200 in vitro. Comparative immunoprecipitation/mass spectrometry from HEK293 nuclear extract revealed distinct interaction profiles of wild type TSSC4 and the variant deficient in PRPF8/SNRNP200 binding with snRNP proteins, other spliceosomal proteins as well as snRNP assembly/recycling factors and chaperones. Our findings elucidate molecular strategies employed by an intrinsically disordered protein to promote snRNP assembly, and suggest multiple TSSC4-dependent stages during snRNP assembly/recycling.


Assuntos
Proteínas Intrinsicamente Desordenadas , Proteínas Supressoras de Tumor/metabolismo , DNA Helicases/metabolismo , Células HEK293 , Humanos , Proteínas Intrinsicamente Desordenadas/metabolismo , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/metabolismo
10.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-34290142

RESUMO

Many bacteria harbor RNA-dependent nucleoside-triphosphatases of the DEAH/RHA family, whose molecular mechanisms and cellular functions are poorly understood. Here, we show that the Escherichia coli DEAH/RHA protein, HrpA, is an ATP-dependent 3 to 5' RNA helicase and that the RNA helicase activity of HrpA influences bacterial survival under antibiotics treatment. Limited proteolysis, crystal structure analysis, and functional assays showed that HrpA contains an N-terminal DEAH/RHA helicase cassette preceded by a unique N-terminal domain and followed by a large C-terminal region that modulates the helicase activity. Structures of an expanded HrpA helicase cassette in the apo and RNA-bound states in combination with cross-linking/mass spectrometry revealed ratchet-like domain movements upon RNA engagement, much more pronounced than hitherto observed in related eukaryotic DEAH/RHA enzymes. Structure-based functional analyses delineated transient interdomain contact sites that support substrate loading and unwinding, suggesting that similar conformational changes support RNA translocation. Consistently, modeling studies showed that analogous dynamic intramolecular contacts are not possible in the related but helicase-inactive RNA-dependent nucleoside-triphosphatase, HrpB. Our results indicate that HrpA may be an interesting target to interfere with bacterial tolerance toward certain antibiotics and suggest possible interfering strategies.


Assuntos
Difosfato de Adenosina/metabolismo , Antibacterianos/farmacologia , RNA Helicases DEAD-box/metabolismo , Farmacorresistência Bacteriana , Proteínas de Escherichia coli/metabolismo , Escherichia coli/crescimento & desenvolvimento , Sítios de Ligação , Cristalografia por Raios X , RNA Helicases DEAD-box/química , RNA Helicases DEAD-box/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Modelos Moleculares , Conformação Proteica
11.
Genes Dev ; 30(21): 2341-2344, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881598

RESUMO

Macromolecular complexes, rather than individual biopolymers, perform many cellular activities. Faithful assembly of these complexes in vivo is therefore a vital challenge of all cells, and its failure can have fatal consequences. To form functional complexes, cells use elaborate measures to select the "right" components and combine them into working entities. How assembly is achieved at the molecular level is unclear in many cases. Three groups (Jin and colleagues, pp. 2391-2403; Xu and colleagues, pp. 2376-2390; and Tang and colleagues in Cell Research) have now provided insights into how an assembly factor specifically recognizes substrate RNA molecules and enables their usage for assembly of Sm-class uridine-rich small nuclear RNA-protein complexes.


Assuntos
Modelos Moleculares , Complexos Multiproteicos/biossíntese , RNA Nuclear Pequeno/metabolismo , Proteínas do Complexo SMN/química , Proteínas do Complexo SMN/metabolismo , Sequência de Bases , Complexos Multiproteicos/química , Ligação Proteica , Domínios Proteicos , Estrutura Terciária de Proteína , RNA Nuclear Pequeno/química , Alinhamento de Sequência
12.
Mol Microbiol ; 117(4): 871-885, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35049093

RESUMO

Escherichia coli RfaH abrogates Rho-mediated polarity in lipopolysaccharide core biosynthesis operons, and ΔrfaH cells are hypersensitive to antibiotics, bile salts, and detergents. Selection for rfaH suppressors that restore growth on SDS identified a temperature-sensitive mutant in which 46 C-terminal residues of the RNA polymerase (RNAP) ß' subunit are replaced with 23 residues carrying a net positive charge. Based on similarity to rpoC397, which confers a temperature-sensitive phenotype and resistance to bacteriophages, we named this mutant rpoC397*. We show that SDS resistance depends on a single nonpolar residue within the C397* tail, whereas basic residues are dispensable. In line with its mimicry of RfaH, C397* RNAP is resistant to Rho but responds to pause signals, NusA, and NusG in vitro similarly to the wild-type enzyme and binds to Rho and Nus factors in vivo. Strikingly, the deletion of rpoZ, which encodes the ω "chaperone" subunit, restores rpoC397* growth at 42°C but has no effect on SDS sensitivity. Our results suggest that the C397* tail traps the ω subunit in an inhibitory state through direct contacts and hinders Rho-dependent termination through long-range interactions. We propose that the dynamic and hypervariable ß'•ω module controls RNA synthesis in response to niche-specific signals.


Assuntos
RNA Polimerases Dirigidas por DNA , Proteínas de Escherichia coli , RNA Polimerases Dirigidas por DNA/metabolismo , Escherichia coli , Proteínas de Escherichia coli/metabolismo , Óperon , Fatores de Alongamento de Peptídeos/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/genética
13.
Mol Syst Biol ; 18(3): e10820, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35225431

RESUMO

Protein kinases play an important role in cellular signaling pathways and their dysregulation leads to multiple diseases, making kinases prime drug targets. While more than 500 human protein kinases are known to collectively mediate phosphorylation of over 290,000 S/T/Y sites, the activities have been characterized only for a minor, intensively studied subset. To systematically address this discrepancy, we developed a human kinase array in Saccharomyces cerevisiae as a simple readout tool to systematically assess kinase activities. For this array, we expressed 266 human kinases in four different S. cerevisiae strains and profiled ectopic growth as a proxy for kinase activity across 33 conditions. More than half of the kinases showed an activity-dependent phenotype across many conditions and in more than one strain. We then employed the kinase array to identify the kinase(s) that can modulate protein-protein interactions (PPIs). Two characterized, phosphorylation-dependent PPIs with unknown kinase-substrate relationships were analyzed in a phospho-yeast two-hybrid assay. CK2α1 and SGK2 kinases can abrogate the interaction between the spliceosomal proteins AAR2 and PRPF8, and NEK6 kinase was found to mediate the estrogen receptor (ERα) interaction with 14-3-3 proteins. The human kinase yeast array can thus be used for a variety of kinase activity-dependent readouts.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Humanos , Quinases Relacionadas a NIMA/genética , Quinases Relacionadas a NIMA/metabolismo , Fosforilação , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
14.
Cell ; 133(2): 328-39, 2008 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-18423203

RESUMO

CASK is a unique MAGUK protein that contains an N-terminal CaM-kinase domain besides the typical MAGUK domains. The CASK CaM-kinase domain is presumed to be a catalytically inactive pseudokinase because it lacks the canonical DFG motif required for Mg2+ binding that is thought to be indispensable for kinase activity. Here we show, however, that CASK functions as an active protein kinase even without Mg2+ binding. High-resolution crystal structures reveal that the CASK CaM-kinase domain adopts a constitutively active conformation that binds ATP and catalyzes phosphotransfer without Mg2+. The CASK CaM-kinase domain phosphorylates itself and at least one physiological interactor, the synaptic protein neurexin-1, to which CASK is recruited via its PDZ domain. Thus, our data indicate that CASK combines the scaffolding activity of MAGUKs with an unusual kinase activity that phosphorylates substrates recuited by the scaffolding activity. Moreover, our study suggests that other pseudokinases (10% of the kinome) could also be catalytically active.


Assuntos
Glicoproteínas/metabolismo , Guanilato Quinases/química , Guanilato Quinases/metabolismo , Neuropeptídeos/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Cristalografia por Raios X , Humanos , Magnésio/metabolismo , Camundongos , Modelos Moleculares , Neurônios/metabolismo , Nucleotídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Homologia de Sequência de Aminoácidos
15.
Nucleic Acids Res ; 49(1): 504-518, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33300032

RESUMO

Mitomycin repair factor A represents a family of DNA helicases that harbor a domain of unknown function (DUF1998) and support repair of mitomycin C-induced DNA damage by presently unknown molecular mechanisms. We determined crystal structures of Bacillus subtilis Mitomycin repair factor A alone and in complex with an ATP analog and/or DNA and conducted structure-informed functional analyses. Our results reveal a unique set of auxiliary domains appended to a dual-RecA domain core. Upon DNA binding, a Zn2+-binding domain, encompassing the domain of unknown function, acts like a drum that rolls out a canopy of helicase-associated domains, entrapping the substrate and tautening an inter-domain linker across the loading strand. Quantification of DNA binding, stimulated ATPase and helicase activities in the wild type and mutant enzyme variants in conjunction with the mode of coordination of the ATP analog suggest that Mitomycin repair factor A employs similar ATPase-driven conformational changes to translocate on DNA, with the linker ratcheting through the nucleotides like a 'skipping rope'. The electrostatic surface topology outlines a likely path for the displaced DNA strand. Our results reveal unique molecular mechanisms in a widespread family of DNA repair helicases linked to bacterial antibiotics resistance.


Assuntos
DNA Helicases/metabolismo , Reparo do DNA , Modelos Químicos , Nucleosídeo-Trifosfatase/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/enzimologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , DNA/metabolismo , Dano ao DNA , DNA Helicases/química , DNA Helicases/classificação , Resistência Microbiana a Medicamentos , Modelos Moleculares , Proteínas Motores Moleculares/metabolismo , Família Multigênica , Nucleosídeo-Trifosfatase/classificação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Eletricidade Estática , Relação Estrutura-Atividade , Zinco/metabolismo
16.
Genes Dev ; 29(24): 2576-87, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26637280

RESUMO

The Brr2 helicase provides the key remodeling activity for spliceosome catalytic activation, during which it disrupts the U4/U6 di-snRNP (small nuclear RNA protein), and its activity has to be tightly regulated. Brr2 exhibits an unusual architecture, including an ∼ 500-residue N-terminal region, whose functions and molecular mechanisms are presently unknown, followed by a tandem array of structurally similar helicase units (cassettes), only the first of which is catalytically active. Here, we show by crystal structure analysis of full-length Brr2 in complex with a regulatory Jab1/MPN domain of the Prp8 protein and by cross-linking/mass spectrometry of isolated Brr2 that the Brr2 N-terminal region encompasses two folded domains and adjacent linear elements that clamp and interconnect the helicase cassettes. Stepwise N-terminal truncations led to yeast growth and splicing defects, reduced Brr2 association with U4/U6•U5 tri-snRNPs, and increased ATP-dependent disruption of the tri-snRNP, yielding U4/U6 di-snRNP and U5 snRNP. Trends in the RNA-binding, ATPase, and helicase activities of the Brr2 truncation variants are fully rationalized by the crystal structure, demonstrating that the N-terminal region autoinhibits Brr2 via substrate competition and conformational clamping. Our results reveal molecular mechanisms that prevent premature and unproductive tri-snRNP disruption and suggest novel principles of Brr2-dependent splicing regulation.


Assuntos
Modelos Moleculares , RNA Helicases/química , RNA Helicases/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/enzimologia , Adenosina Trifosfatases/metabolismo , Chaetomium/enzimologia , Chaetomium/genética , Cristalização , Humanos , Ligação Proteica , Dobramento de Proteína , Processamento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , RNA Helicases/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/genética , Spliceossomos/genética
17.
J Biol Chem ; 297(1): 100829, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34048711

RESUMO

Brr2 is an essential Ski2-like RNA helicase that exhibits a unique structure among the spliceosomal helicases. Brr2 harbors a catalytically active N-terminal helicase cassette and a structurally similar but enzymatically inactive C-terminal helicase cassette connected by a linker region. Both cassettes contain a nucleotide-binding pocket, but it is unclear whether nucleotide binding in these two pockets is related. Here we use biophysical and computational methods to delineate the functional connectivity between the cassettes and determine whether occupancy of one nucleotide-binding site may influence nucleotide binding at the other cassette. Our results show that Brr2 exhibits high specificity for adenine nucleotides, with both cassettes binding ADP tighter than ATP. Adenine nucleotide affinity for the inactive C-terminal cassette is more than two orders of magnitude higher than that of the active N-terminal cassette, as determined by slow nucleotide release. Mutations at the intercassette surfaces and in the connecting linker diminish the affinity of adenine nucleotides for both cassettes. Moreover, we found that abrogation of nucleotide binding at the C-terminal cassette reduces nucleotide binding at the N-terminal cassette 70 Å away. Molecular dynamics simulations identified structural communication lines that likely mediate these long-range allosteric effects, predominantly across the intercassette interface. Together, our results reveal intricate networks of intramolecular interactions in the complex Brr2 RNA helicase, which fine-tune its nucleotide affinities and which could be exploited to regulate enzymatic activity during splicing.


Assuntos
Nucleotídeos de Adenina/metabolismo , RNA Helicases/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Aminoácidos/metabolismo , Sítios de Ligação , Humanos , Cinética , Simulação de Dinâmica Molecular , Mutação/genética , Domínios Proteicos , Ribonucleoproteínas Nucleares Pequenas/química , Especificidade por Substrato
18.
Nucleic Acids Res ; 48(8): 4572-4584, 2020 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-32196113

RESUMO

The single G protein of the spliceosome, Snu114, has been proposed to facilitate splicing as a molecular motor or as a regulatory G protein. However, available structures of spliceosomal complexes show Snu114 in the same GTP-bound state, and presently no Snu114 GTPase-regulatory protein is known. We determined a crystal structure of Snu114 with a Snu114-binding region of the Prp8 protein, in which Snu114 again adopts the same GTP-bound conformation seen in spliceosomes. Snu114 and the Snu114-Prp8 complex co-purified with endogenous GTP. Snu114 exhibited weak, intrinsic GTPase activity that was abolished by the Prp8 Snu114-binding region. Exchange of GTP-contacting residues in Snu114, or of Prp8 residues lining the Snu114 GTP-binding pocket, led to temperature-sensitive yeast growth and affected the same set of splicing events in vivo. Consistent with dynamic Snu114-mediated protein interactions during splicing, our results suggest that the Snu114-GTP-Prp8 module serves as a relay station during spliceosome activation and disassembly, but that GTPase activity may be dispensable for splicing.


Assuntos
Guanosina Trifosfato/química , Splicing de RNA , Ribonucleoproteína Nuclear Pequena U4-U6/química , Ribonucleoproteína Nuclear Pequena U5/química , Proteínas de Saccharomyces cerevisiae/química , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/metabolismo , Modelos Moleculares , Conformação Proteica , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
19.
J Biol Chem ; 295(7): 2097-2112, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31914407

RESUMO

The RNA helicase bad response to refrigeration 2 homolog (BRR2) is required for the activation of the spliceosome before the first catalytic step of RNA splicing. BRR2 represents a distinct subgroup of Ski2-like nucleic acid helicases whose members comprise tandem helicase cassettes. Only the N-terminal cassette of BRR2 is an active ATPase and can unwind substrate RNAs. The C-terminal cassette represents a pseudoenzyme that can stimulate RNA-related activities of the N-terminal cassette. However, the molecular mechanisms by which the C-terminal cassette modulates the activities of the N-terminal unit remain elusive. Here, we show that N- and C-terminal cassettes adopt vastly different relative orientations in a crystal structure of BRR2 in complex with an activating domain of the spliceosomal Prp8 protein at 2.4 Å resolution compared with the crystal structure of BRR2 alone. Likewise, inspection of BRR2 structures within spliceosomal complexes revealed that the cassettes occupy different relative positions and engage in different intercassette contacts during different splicing stages. Engineered disulfide bridges that locked the cassettes in two different relative orientations had opposite effects on the RNA-unwinding activity of the N-terminal cassette, with one configuration enhancing and the other configuration inhibiting RNA unwinding compared with the unconstrained protein. Moreover, we found that differences in relative positioning of the cassettes strongly influence RNA-stimulated ATP hydrolysis by the N-terminal cassette. Our results indicate that the inactive C-terminal cassette of BRR2 can both positively and negatively affect the activity of the N-terminal helicase unit from a distance.


Assuntos
Splicing de RNA/genética , Proteínas de Ligação a RNA/ultraestrutura , Ribonucleoproteínas Nucleares Pequenas/ultraestrutura , Spliceossomos/genética , Adenosina Trifosfatases/genética , Catálise , Cristalografia por Raios X , Humanos , Conformação Proteica , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Spliceossomos/ultraestrutura , Especificidade por Substrato
20.
J Cell Sci ; 132(6)2019 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-30745339

RESUMO

Protein scaffolds at presynaptic active zone membranes control information transfer at synapses. For scaffold biogenesis and maintenance, scaffold components must be safely transported along axons. A spectrum of kinases has been suggested to control transport of scaffold components, but direct kinase-substrate relationships and operational principles steering phosphorylation-dependent active zone protein transport are presently unknown. Here, we show that extensive phosphorylation of a 150-residue unstructured region at the N-terminus of the highly elongated Bruchpilot (BRP) active zone protein is crucial for ordered active zone precursor transport in Drosophila Point mutations that block SRPK79D kinase-mediated phosphorylation of the BRP N-terminus interfered with axonal transport, leading to BRP-positive axonal aggregates that also contain additional active zone scaffold proteins. Axonal aggregates formed only in the presence of non-phosphorylatable BRP isoforms containing the SRPK79D-targeted N-terminal stretch. We assume that specific active zone proteins are pre-assembled in transport packages and are thus co-transported as functional scaffold building blocks. Our results suggest that transient post-translational modification of a discrete unstructured domain of the master scaffold component BRP blocks oligomerization of these building blocks during their long-range transport.


Assuntos
Transporte Axonal/fisiologia , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Fosforilação , Terminações Pré-Sinápticas/metabolismo , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa