Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 685: 149140, 2023 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-37918326

RESUMO

Previously, to generate genome-edited animals by introducing CRISPR-associated protein 9 (Cas9) into embryos, we developed the Technique for Animal Knockout system by Electroporation (TAKE). Additionally, by fluorescently labeling Cas9, we successfully visualized the Cas9 introduced into the pronuclei of embryos; however, whether Cas9 was introduced directly into the pronuclei by electric pulse or transferred from the cytoplasm by nuclear localization signal (NLS) remained unknown. Herein, we evaluated the localization of Cas9 with (Cas9-NLS) or without NLS (Cas9-noNLS) in mice embryos following electroporation by fusing them with GFP. Furthermore, we visually studied their effects on genome-editing rates in offspring by targeting tyrosinase gene. Fluorescence intensity in pronuclei of Cas9-NLS-electroporated embryos and genome-editing rates of offspring were significantly higher than those of Cas9-noNLS-electroporated embryos. Furthermore, fluorescence in Cas9-NLS-electroporated embryos in which pronuclei had not yet appeared 2.5 h after insemination was observed in the pronuclei of embryos appearing 3.5 h after electroporation. We demonstrated the effective transportation of Cas9 from the cytoplasm to pronuclei by the NLS following TAKE, which resulted in increased genome-editing rates in offspring. The TAKE along with fluorescently labeled nucleases can be used to verify nuclease delivery into individual embryos prior to embryo transfer for efficiently producing genome-edited animals.


Assuntos
Sistemas CRISPR-Cas , Sinais de Localização Nuclear , Camundongos , Animais , Sistemas CRISPR-Cas/genética , Sinais de Localização Nuclear/genética , Camundongos Knockout , Edição de Genes/métodos , Eletroporação/métodos
2.
J Reprod Dev ; 68(5): 307-311, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-35831117

RESUMO

Genetically engineered animals can be produced quickly using genome editing technology. A new electroporation technique, technique for animal knockout system by electroporation (TAKE), aids in the production of genome-edited animals by introducing nucleases into intact embryos using electroporation instead of microinjection. It is difficult to confirm nuclease delivery into embryos after electroporation using the conventional TAKE method. We previously reported the successful visualization of fluorescently-labeled tracrRNA in embryos after electroporation Cas9 paired with the crRNA:tracrRNA-ATTO550 duplex. However, the amount of fluorescence signal from labeled tracrRNA in embryos did not correlate with the genome editing rate of the offspring. This study examined the visualization of Cas9 protein in embryos after electroporation and its correlation with the genome editing rate of the offspring using a fluorescent Cas9 fusion protein. The fluorescent Cas9 protein was observed in all embryos that survived following electroporation. We found that the efficiency of Cas9 protein delivery into embryos via electroporation depended on the pulse length. Furthermore, we demonstrated that the amount of fluorescent Cas9 protein detected in the embryos correlated with the genome editing efficiency of the embryos. These data indicate that the TAKE method using fluorescently-labeled nucleases can be used to optimize the delivery conditions and verify nuclease delivery into individual embryos prior to embryo transfer for the efficient production of genome-edited animals.


Assuntos
Proteína 9 Associada à CRISPR , Edição de Genes , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Eletroporação/métodos , Edição de Genes/métodos , Camundongos , Microinjeções
3.
J Reprod Dev ; 66(5): 469-473, 2020 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-32713893

RESUMO

Genome editing technology contributes to the quick and highly efficient production of genetically engineered animals. These animals are helpful in clarifying the mechanism of human disease. Recently, a new electroporation technique (TAKE: Technique for animal knockout system by electroporation) was developed to produce genome-edited animals by introducing nucleases into intact embryos using electroporation instead of the microinjection method. The aim of this study was to increase the efficiency of production of genome-edited animals using the TAKE method. In the conventional protocol, it was difficult to confirm the introduction of nucleases into embryos and energization during operation. Using only embryos that introduced nucleases for embryo transfer, it will lead to increased efficiency in the production of genome-edited animals. This study examined the visualization in the introduction of nucleases into the embryos by using nucleases fluorescent labeled with ATTO-550. The embryos were transfected with Cas9 protein and fluorescent labeled dual guide RNA (mixture with crRNA and tracrRNA with ATTO-550) targeted tyrosinase gene by the TAKE method. All embryos that survived after electroporation showed fluorescence. Of these embryos with fluorescence, 43.7% developed to morphologically normal offspring. In addition, 91.7% of offspring were edited by the tyrosinase gene. This study is the first to demonstrate that the introduction of nucleases into embryos by the TAKE method could be visualized using fluorescent-labeled nucleases. This improved TAKE method can be used to produce genome-edited animals and confirm energization during operation.


Assuntos
Eletroporação/métodos , Edição de Genes/métodos , Animais , Proteína 9 Associada à CRISPR/genética , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Transferência Embrionária , Feminino , Corantes Fluorescentes/farmacologia , Genoma , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Microinjeções , Microscopia de Fluorescência , RNA Guia de Cinetoplastídeos
4.
Sci Rep ; 13(1): 3604, 2023 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-36869082

RESUMO

Embryo transfer (ET) is an essential reproductive technology for the production of new animal strains and maintenance of genetic resources. We developed a method, named Easy-ET, to induce pseudopregnancy in female rats by artificial stimulation using sonic vibration instead of mating with vasectomized males. This study examined the application of this method for the induction of pseudopregnancy in mice. Offspring were obtained from two-cell embryos transferred into females with pseudopregnancy induced using sonic vibration in proestrus on the day before embryo transfer. Furthermore, high developmental rates of offspring were observed when pronuclear and two-cell embryos were transferred to females in estrus that were stimulated on the day of embryo transfer. Genome-edited mice were also obtained using frozen-warmed pronuclear embryos with clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated system (Cas) nucleases introduced using the technique for animal knockout system by electroporation (TAKE) method, which were transferred to females with pseudopregnancy induced on the day of embryo transfer. This study demonstrated that induction of pseudopregnancy by sonic vibration was also possible in mice.


Assuntos
Transtorno Conversivo , Pseudogravidez , Feminino , Masculino , Gravidez , Camundongos , Ratos , Animais , Vibração , Delusões , Comunicação Celular
5.
BBA Adv ; 3: 100092, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37250100

RESUMO

Glycation, caused by reactive dicarbonyls, plays a role in various diseases by forming advanced glycation end products. In live cells, reactive dicarbonyls such as glyoxal (GO) and methylglyoxal (MGO) are produced during cell metabolism, and these should be removed consistently. However, the dicarbonyl metabolic system in the mitochondria remains unclear. It has been speculated that the mammalian mitochondrial protein ES1 is a homolog of bacterial elbB possessing glyoxalase III (GLO3) activity. Therefore, in this study, to investigate ES1 functions and GLO3 activity, we generated ES1-knockout (KO) mice and recombinant mouse ES1 protein and investigated the biochemical and histological analyses. In the mitochondrial fraction obtained from ES1-KO mouse brains, the GO metabolism and cytochrome c oxidase activity were significantly lower than those in the mitochondrial fraction obtained from wildtype (WT) mouse brains. However, the morphological features of the mitochondria did not change noticeably in the ES1-KO mouse brains compared with those in the WT mouse brains. The mitochondrial proteome analysis showed that the MGO degradation III pathway and oxidative phosphorylation-related proteins were increased. These should be the response to the reduced GO metabolism caused by ES1 deletion to compensate for the dicarbonyl metabolism and damaged cytochrome c oxidase by elevated GO. Recombinant mouse ES1 protein exhibited catalytic activity of converting GO to glycolic acid. These results indicate that ES1 possesses GLO3 activity and modulates the metabolism of GO in the mitochondria. To our knowledge, this is the first study to show a novel metabolic pathway for reactive dicarbonyls in mitochondria.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa