RESUMO
Rhizotaxis is established under changing environmental conditions via periodic priming of lateral root (LR) initiation at the root tips and adaptive LR formation along the primary root (PR). In contrast to the adaptable LR formation in response to nutrient availability, there is little information on root development during interactions with beneficial microbes. The Arabidopsis root system is characteristically modified upon colonization by the root endophytic fungus Serendipita indica, accompanied by a marked stimulation of LR formation and the inhibition of PR growth. This root system modification has been attributed to endophyte-derived indole-3-acetic acid (IAA). However, it has yet to be clearly explained how fungal IAA affects the intrinsic LR formation process. In this study, we show that diffusible compounds (chemical signals) other than IAA are present in the coculture medium of Arabidopsis and S. indica and induce auxin-responsive DR5::GUS expression in specific sections within the pericycle layer. The DR5::GUS expression was independent of polar auxin transport and the major IAA biosynthetic pathways, implicating unidentified mechanisms responsible for the auxin response and LR formation. Detailed metabolite analysis revealed the presence of multiple compounds that induce local auxin responses and LR formation. We found that benzoic acid (BA) cooperatively acted with exogenous IAA to generate a local auxin response in the pericycle layer, suggesting that BA is one of the chemical signals involved in adaptable LR formation. Identification and characterization of the chemical signals will contribute to a greater understanding of the molecular mechanisms underlying adaptable root development and to unconventional technologies for sustainable agriculture.
Assuntos
Arabidopsis/metabolismo , Basidiomycota/metabolismo , Proteínas de Arabidopsis/metabolismo , Transporte Biológico , Técnicas de Cocultura , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Organogênese Vegetal , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Long-chain bases (LCBs), also termed sphingobases, are building blocks of sphingolipids, which make up a significant proportion of the cellular membrane system. They are also bioactive molecules regulating intracellular processes. Elevated levels of LCBs like phytosphingosine and dihydrosphingosine can induce cell death in plants and correlate with programmed cell death (PCD) reactions after pathogen recognition. We investigated the previously hypothesized antagonism between phosphorylated and nonphosphorylated LCBs with respect to cell death in Arabidopsis thaliana. Using HPLC-MS/MS, we determined levels of phosphorylated and nonphosphorylated LCBs after cell death induction by LCB application or by Fumonisin B1 (FB1) treatment. We show that previously reported antagonistic effects of phosphorylated LCBs after simultaneous application with nonphosphorylated LCBs are linked to reduced uptake of nonphosphorylated LCBs into the tissue. Furthermore, phosphorylated LCBs did not antagonize PCD induced by avirulence protein recognition. In a functional approach, we used Arabidopsis lines with perturbed levels of phosphorylated LCBs. In these plants, the degree of FB1-induced cell death did not consistently correlate negatively with levels of phosphorylated LCBs, but positively with levels of major nonphosphorylated LCBs phytosphingosine and dihydrosphingosine. As treatment with phosphorylated LCBs did not antagonize cell death, and elevated in vivo levels of these LCB species did not reduce FB1-induced cell death, we conclude that the hypothesized general cell death-antagonizing effect of phosphorylated LCBs in plant cell death reactions should be rejected. Instead, our time-course analysis of LCB levels during cell death reactions showed a positive correlation between levels of nonphosphorylated LCBs and cell death.
Assuntos
Fumonisinas/farmacologia , Esfingolipídeos/metabolismo , Morte Celular/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Esfingosina/análogos & derivados , Esfingosina/metabolismoRESUMO
20 I 21 II 21 III 23 IV 29 V 33 VI 35 36 36 References 36 SUMMARY: Root endophytism and mycorrhizal associations are complex derived traits in fungi that shape plant physiology. Sebacinales (Agaricomycetes, Basidiomycota) display highly diverse interactions with plants. Although early-diverging Sebacinales lineages are root endophytes and/or have saprotrophic abilities, several more derived clades harbour obligate biotrophs forming mycorrhizal associations. Sebacinales thus display transitions from saprotrophy to endophytism and to mycorrhizal nutrition within one fungal order. This review discusses the genomic traits possibly associated with these transitions. We also show how molecular ecology revealed the hyperdiversity of Sebacinales and their evolutionary diversification into two sister families: Sebacinaceae encompasses mainly ectomycorrhizal and early-diverging saprotrophic species; the second family includes endophytes and lineages that repeatedly evolved ericoid, orchid and ectomycorrhizal abilities. We propose the name Serendipitaceae for this family and, within it, we transfer to the genus Serendipita the endophytic cultivable species Piriformospora indica and P. williamsii. Such cultivable Serendipitaceae species provide excellent models for root endophytism, especially because of available genomes, genetic tractability, and broad host plant range including important crop plants and the model plant Arabidopsis thaliana. We review insights gained with endophytic Serendipitaceae species into the molecular mechanisms of endophytism and of beneficial effects on host plants, including enhanced resistance to abiotic and pathogen stress.
Assuntos
Basidiomycota/classificação , Basidiomycota/fisiologia , Embriófitas/microbiologia , Adaptação Biológica , Biodiversidade , Evolução Biológica , Endófitos/fisiologia , FilogeniaRESUMO
Lipid peroxidation (LPO) is induced by a variety of abiotic and biotic stresses. Although LPO is involved in diverse signaling processes, little is known about the oxidation mechanisms and major lipid targets. A systematic lipidomics analysis of LPO in the interaction of Arabidopsis (Arabidopsis thaliana) with Pseudomonas syringae revealed that LPO is predominantly confined to plastid lipids comprising galactolipid and triacylglyceride species and precedes programmed cell death. Singlet oxygen was identified as the major cause of lipid oxidation under basal conditions, while a 13-lipoxygenase (LOX2) and free radical-catalyzed lipid oxidation substantially contribute to the increase upon pathogen infection. Analysis of lox2 mutants revealed that LOX2 is essential for enzymatic membrane peroxidation but not for the pathogen-induced free jasmonate production. Despite massive oxidative modification of plastid lipids, levels of nonoxidized lipids dramatically increased after infection. Pathogen infection also induced an accumulation of fragmented lipids. Analysis of mutants defective in 9-lipoxygenases and LOX2 showed that galactolipid fragmentation is independent of LOXs. We provide strong in vivo evidence for a free radical-catalyzed galactolipid fragmentation mechanism responsible for the formation of the essential biotin precursor pimelic acid as well as of azelaic acid, which was previously postulated to prime the immune response of Arabidopsis. Our results suggest that azelaic acid is a general marker for LPO rather than a general immune signal. The proposed fragmentation mechanism rationalizes the pathogen-induced radical amplification and formation of electrophile signals such as phytoprostanes, malondialdehyde, and hexenal in plastids.
Assuntos
Arabidopsis/química , Ácidos Dicarboxílicos/química , Galactolipídeos/química , Peroxidação de Lipídeos , Ácidos Pimélicos/química , Imunidade Vegetal , Arabidopsis/microbiologia , Membrana Celular/química , Ácidos Graxos/análise , Ácidos Graxos/química , Lipoxigenase/química , Oxirredução , Folhas de Planta/química , Folhas de Planta/microbiologia , Pseudomonas syringae/imunologia , Pseudomonas syringae/patogenicidade , Oxigênio Singlete/químicaRESUMO
Programmed cell death (PCD) is considered as a hallmark of strain-specific immunity. In contrast, generic basal immunity is thought to act without PCD. This classical bifurcation has been questioned during recent years. Likewise, the role of jasmonate signalling for these two modes of innate immunity has remained ambiguous. We have addressed both questions using two closely related grapevine cell lines (V. rupestris, V. vinifera cv. 'Pinot Noir') that contrast in their cell-death response to the bacterial elicitor harpin and the hormonal trigger methyl jasmonate (MeJA). We follow different cellular (loss of membrane integrity, mortality), molecular (induction of transcripts for phytoalexin synthesis and for metacaspases), as well as metabolic (sphingolipid profiles) responses to the two triggers in the two cell lines. The role of NADPH oxidases and induction of transcripts for the class-II metacaspases MC5 differ qualitatively between the two cell lines. We tested a possible role of sphingolipid metabolism but can rule this out. We propose a model, where V. rupestris, originating from co-evolution with several biotrophic pathogens, readily activates a hypersensitive cell death in response to harpin, while the context of MeJA-induced cell death in 'Pinot Noir' might not be related to immunity at all. We propose that the underlying signalling is modular, recruiting metacaspases differently depending on upstream signalling.
Assuntos
Apoptose , Vitis , Morte Celular , Transdução de Sinais , Vitis/metabolismoRESUMO
Sphingolipid long-chain bases (LCBs) are building blocks for membrane-localized sphingolipids, and are involved in signal transduction pathways in plants. Elevated LCB levels are associated with the induction of programmed cell death and pathogen-derived toxin-induced cell death. Therefore, levels of free LCBs can determine survival of plant cells. To elucidate the contribution of metabolic pathways regulating high LCB levels, we applied the deuterium-labeled LCB D-erythro-sphinganine-d7 (D7-d18:0), the first LCB in sphingolipid biosynthesis, to Arabidopsis leaves and quantified labeled LCBs, LCB phosphates (LCB-Ps), and 14 abundant ceramide (Cer) species over time. We show that LCB D7-d18:0 is rapidly converted into the LCBs d18:0P, t18:0, and t18:0P. Deuterium-labeled ceramides were less abundant, but increased over time, with the highest levels detected for Cer(d18:0/16:0), Cer(d18:0/24:0), Cer(t18:0/16:0), and Cer(t18:0/22:0). A more than 50-fold increase of LCB-P levels after leaf incubation in LCB D7-d18:0 indicated that degradation of LCBs via LCB-Ps is important, and we hypothesized that LCB-P degradation could be a rate-limiting step to reduce high levels of LCBs. To functionally test this hypothesis, we constructed a transgenic line with dihydrosphingosine-1-phosphate lyase 1 (DPL1) under control of an inducible promotor. Higher expression of DPL1 significantly reduced elevated LCB-P and LCB levels induced by Fumonisin B1, and rendered plants more resistant against this fungal toxin. Taken together, we provide quantitative data on the contribution of major enzymatic pathways to reduce high LCB levels, which can trigger cell death. Specifically, we provide functional evidence that DPL1 can be a rate-limiting step in regulating high LCB levels.
RESUMO
Sphingolipid long chain bases (LCBs) are building blocks of sphingolipids and can serve as signalling molecules, but also have antimicrobial activity and were effective in reducing growth of a range of human pathogens. In plants, LCBs are linked to cell death processes and the regulation of defence reactions against pathogens, but their role in directly influencing growth of plant-interacting microorganisms has received little attention. Therefore, we tested the major plant LCB phytosphingosine in in vitro tests with the plant pathogenic fungi Verticillium longisporum, Fusarium graminearum and Sclerotinia sclerotiorum, the plant symbiotic fungal endophyte Serendipita indica, the bacterial pathogens Pseudomonas syringae pv. tomato (Pst), Agrobacterium tumefaciens, and the related beneficial strain Rhizobium radiobacter. Phytosphingosine inhibited growth of these organisms at micromolar concentrations. Among the fungal pathogens, S. sclerotiorum was the most, and F. graminearum was the least sensitive. 15.9 µg/mL phytosphingosine effectively killed 95% of the three bacterial species. Plant disease symptoms and growth of Pst were also inhibited by phytosphingosine when co-infiltrated into Arabidopsis leaves, with no visible negative effect on host tissue. Taken together, we demonstrate that the plant LCB phytosphingosine inhibits growth of plant-interacting microorganisms. We discuss the potential of elevated LCB levels to enhance plant pathogen resistance.
Assuntos
Fungos/efeitos dos fármacos , Esfingolipídeos/metabolismo , Esfingosina/análogos & derivados , Agrobacterium tumefaciens , Antifúngicos/farmacologia , Arabidopsis , Fungos/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Imunidade Vegetal/imunologia , Folhas de Planta/metabolismo , Pseudomonas syringae , Esfingosina/metabolismo , Esfingosina/farmacologiaRESUMO
Perennial ryegrass (Lolium perenne L.) possesses a high level of nutritional quality and is widely used as a forage species to establish permanent pastures in southern Chile. However, the productivity of most such pastures is limited by various environmental agents, such as insect pests and drought. In this context, our work stresses the need for elucidating the ability of fungal endophytes to establish interactions with plants, and to understand how these processes contribute to plant performance and fitness. Therefore, we evaluated the colonization and impact of two native strains of the endophytic insect-pathogenic fungus (EIPF) group isolated from permanent ryegrass pastures in southern Chile. Roots and seeds of ryegrass and scarabaeid larvae were collected from nine different ryegrass pastures in the Los Ríos region of southern Chile to specifically isolate EIPFs belonging to the genera Beauveria and Metarhizium. Fungal isolations were made on 2% water agar with antibiotics, and strains were identified by analyzing the entire internal transcribed spacer (ITS) 1-5.8S-ITS2 ribosomal DNA region. Four strains of Beauveria and 33 strains of Metarhizium were isolated only in scarabaeid larvae from ryegrass pastures across four sites. Experimental mini-pastures that were either not inoculated (control) or co-inoculated with conidia of the strains Beauveria vermiconia NRRL B-67993 (P55_1) and Metarhizium aff. lepidiotae NRRL B-67994 (M25_2) under two soil humidity levels were used. Ryegrass plants were randomly collected from the mini-pastures to characterize EIPF colonization in the roots by real-time PCR and fluorescence microscopy. Aboveground biomass was measured to analyze the putative impact of colonization on the mini-pastures' aboveground phenotypic traits with R software using a linear mixed-effects model and the ANOVA statistical test. Seasonal variation in the relative abundance of EIPFs was observed, which was similar between both strains from autumn to spring, but different in summer. In summer, the relative abundance of both EIPFs decreased under normal moisture conditions, but it did not differ significantly under water stress. The aboveground biomass of ryegrass also increased from autumn to spring and decreased in summer in both the inoculated and control mini-pastures. Although differences were observed between moisture levels, they were not significant between the control and inoculated mini-pastures, except in July (fresh weight and leaf area) and October (dry weight). Our findings indicate that native strains of B. vermiconia NRRL B-67993 (P55_1) and M. aff. lepidiotae NRRL B-67994 (M25_2) colonize and co-exist in the roots of ryegrass, and these had little or no effect on the mini-pastures' aboveground biomass; however, they could have other functions, such as protection against root herbivory by insect pests.
Assuntos
Beauveria , Lolium , Metarhizium , Animais , Beauveria/fisiologia , Metarhizium/genética , Lolium/microbiologia , Insetos/microbiologia , Plantas/microbiologia , Larva/microbiologiaRESUMO
Colonization of barley roots with the basidiomycete fungus Piriformospora indica (Sebacinales) induces systemic resistance against the biotrophic leaf pathogen Blumeria graminis f. sp. hordei (B. graminis). To identify genes involved in this mycorrhiza-induced systemic resistance, we compared the leaf transcriptome of P. indica-colonized and noncolonized barley plants 12, 24, and 96 h after challenge with a virulent race of B. graminis. The leaf pathogen induced specific gene sets (e.g., LRR receptor kinases and WRKY transcription factors) at 12 h postinoculation (hpi) (prepenetration phase) and vesicle-localized gene products 24 hpi (haustorium establishment). Metabolic analysis revealed a progressing shift of steady state contents of the intermediates glucose-1-phosphate, uridinediphosphate-glucose, and phosphoenolpyruvate 24 and 96 hpi, indicating that B. graminis shifts central carbohydrate metabolism in favor of sucrose biosynthesis. Both B. graminis and P. indica increased glutamine and alanine contents, whereas substrates for starch and nitrogen assimilation (adenosinediphosphate- glucose and oxoglutarate) decreased. In plants that were more B. graminis resistant due to P. indica root colonization, 22 transcripts, including those of pathogenesis-related genes and genes encoding heat-shock proteins, were differentially expressed ?twofold in leaves after B. graminis inoculation compared with non-mycorrhized plants. Detailed expression analysis revealed a faster induction after B. graminis inoculation between 8 and 16 hpi, suggesting that priming of these genes is an important mechanism of P. indica-induced systemic disease resistance.
Assuntos
Ascomicetos/fisiologia , Basidiomycota/fisiologia , Resistência à Doença , Hordeum/metabolismo , Folhas de Planta/metabolismo , Transcriptoma , Clorofila/metabolismo , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Hordeum/genética , Hordeum/imunologia , Hordeum/microbiologia , Interações Hospedeiro-Patógeno , Análise de Sequência com Séries de Oligonucleotídeos , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/microbiologia , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , RNA Mensageiro/genética , RNA de Plantas/genéticaRESUMO
Plant roots are built of concentric cell layers that are thought to respond to microbial infections by employing specific, genetically defined programs. Yet, the functional impact of this radial organization remains elusive, particularly due to the lack of genome-wide techniques for monitoring expression at a cell-layer resolution. Here, cell-type-specific expression of tagged ribosomes enabled the isolation of ribosome-bound mRNA to obtain cell-layer translatomes (TRAP-seq, translating ribosome affinity purification and RNA sequencing). After inoculation with the vascular pathogen Verticillium longisporum, pathogenic oomycete Phytophthora parasitica, or mutualistic endophyte Serendipita indica, root cell-layer responses reflected the fundamentally different colonization strategies of these microbes. Notably, V. longisporum specifically suppressed the endodermal barrier, which restricts fungal progression, allowing microbial access to the root central cylinder. Moreover, localized biosynthesis of antimicrobial compounds and ethylene differed in response to pathogens and mutualists. These examples highlight the power of this resource to gain insights into root-microbe interactions and to develop strategies in crop improvement.
Assuntos
Arabidopsis/microbiologia , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Phytophthora/crescimento & desenvolvimento , Imunidade Vegetal/fisiologia , Raízes de Plantas/microbiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Raízes de Plantas/imunologia , Rizosfera , Simbiose/imunologiaRESUMO
Fungi of the order Sebacinales (Basidiomycota) are involved in a wide spectrum of mutualistic symbioses with various plants, thereby exhibiting unique potential for biocontrol strategies. Piriformospora indica, a model organism of this fungal order, is able to increase the biomass and grain yield of crop plants, and induces local and systemic resistance to fungal diseases and tolerance to abiotic stress. To elucidate the molecular basis for root colonization, we characterized the interaction of P. indica with barley roots by combining global gene expression profiling, metabolic profiling, and genetic studies. At the metabolic level, we show that fungal colonization reduces the availability of free sugars and amino acids to the root tip. At the transcriptional level, consecutive interaction stages covering pre-penetration-associated events and progressing through to root colonization showed differential regulation of signal perception and transduction components, secondary metabolism, and genes associated with membrane transport. Moreover, we observed stage-specific up-regulation of genes involved in phytohormone metabolism, mainly encompassing gibberellin, auxin and abscisic acid, but salicylic acid-associated gene expression was suppressed. The changes in hormone homoeostasis were accompanied with a general suppression of the plant innate immune system. Further genetic studies showed reduced fungal colonization in mutants that are impaired in gibberellin synthesis as well as perception, and implicate gibberellin as a modulator of the root's basal defence. Our data further reveal the complexity of compatibility mechanisms in host-microbe interactions, and identify gibberellin signaling as potential target for successful fungi.
Assuntos
Basidiomycota/fisiologia , Giberelinas/metabolismo , Hordeum/genética , Raízes de Plantas/microbiologia , Simbiose , Ácido Abscísico/metabolismo , DNA de Plantas/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Hordeum/imunologia , Hordeum/metabolismo , Hordeum/microbiologia , Imunidade Inata , Ácidos Indolacéticos/metabolismo , Metaboloma , Análise de Sequência com Séries de Oligonucleotídeos , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Transdução de Sinais , Regulação para CimaRESUMO
BACKGROUND: The plant endophytic fungus Serendipita indica colonizes roots of a wide range of plant species and can enhance growth and stress resistance of these plants. Due to its ease of axenic cultivation and its broad host plant range including the model plant Arabidopsis thaliana and numerous crop plants, it is widely used as a model fungus to study beneficial fungus-root interactions. In addition, it was suggested to be utilized for commercial applications, e.g. to enhance yield in barley and other species. To produce inoculum, S. indica is mostly cultivated in a complex Hill-Käfer medium (CM medium), however, growth in this medium is slow, and yield of chlamydospores, which are often used for plant root inoculation, is relatively low. RESULTS: We tested and optimized a simple vegetable juice-based medium for an enhanced yield of fungal inoculum. The described vegetable juice (VJ) medium is based on commercially available vegetable juice and is easy to prepare. VJ medium was superior to the currently used CM medium with respect to biomass production in liquid medium and hyphal growth on agar plates. Using solid VJ medium supplemented with sucrose (VJS), a high amount of chlamydospores developed already after 8 days of cultivation, producing significantly more spores than on CM medium. Use of VJ medium is not restricted to S. indica, as it also supported growth of two pathogenic fungi often used in plant pathology experiments: the ascomycete Fusarium graminearum, the causal agent of Fusarium head blight disease on wheat and barley, and Verticillium longisporum, the causal agent of verticillium wilt. CONCLUSIONS: The described VJ medium is recommended for streamlined and efficient production of inoculum for the plant endophytic fungus Serendipita indica and might prove superior for the propagation of other fungi for research purposes.
RESUMO
We analyze here, by noninvasive electrophysiology, local and systemic plant responses in the interaction of barley (Hordeum vulgare L.) with the root-colonizing basidiomycete Piriformospora indica. In the short term (seconds, minutes), a constant flow of P. indica chlamydospores along primary roots altered surface pH characteristics; whereas the root-hair zone transiently alkalized-a typical elicitor response-the elongation zone acidified, indicative of enhanced H(+) extrusion and plasma membrane H(+) ATPase stimulation. Eight to 10 min after treating roots with chlamydospores, the apoplastic pH of leaves began to acidify, which contrasts with observations of an alkalinization response to various stressors and microbe-associated molecular patterns (MAMPs). In the long term (days), plants with P. indica-colonized roots responded to inoculation with the leaf-pathogenic powdery mildew fungus Blumeria graminis f. sp. hordei with a leaf apoplastic pH increase of about 2, while the leaf apoplast of noncolonized barley responded to B. graminis f. sp. hordei merely with a pH increase of 0.8. The strong apoplastic pH response is reminiscent of B. graminis f. sp. hordei-triggered pH shifts in resistance gene-mediated resistant barley leaves or upon treatment with a chemical resistance inducer. In contrast, the MAMP N-acetylchito-octaose did not induce resistance to B. graminis f. sp. hordei and did not trigger the primed apoplastic pH shift. We speculate that the primed pH increase is indicative of and supports the potentiated systemic response to B. graminis f. sp. hordei-induced by P. indica in barley.
Assuntos
Ascomicetos/fisiologia , Basidiomycota/metabolismo , Hordeum/microbiologia , Micorrizas/fisiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Transdução de Sinais , Álcalis/metabolismo , Ascomicetos/efeitos dos fármacos , Basidiomycota/efeitos dos fármacos , Contagem de Colônia Microbiana , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Micorrizas/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Esporos Fúngicos/efeitos dos fármacos , Esporos Fúngicos/metabolismo , Propriedades de Superfície , Fatores de Tempo , gama-Ciclodextrinas/farmacologiaRESUMO
We analyzed the requirement of specific defense pathways for powdery mildew (Golovinomyces orontii) resistance induced by the basidiomycete Piriformospora indica in Arabidopsis. Piriformospora indica root colonization reduced G. orontii conidia in wild-type (Col-0), npr1-3 (nonexpressor of PR genes 1-3) and NahG plants, but not in the npr1-1 null mutant. Therefore, cytoplasmic but not nuclear localization of NPR1 is required for P. indica-induced resistance. Two jasmonate signaling mutants were non-responsive to P. indica, and jasmonic acid-responsive vegetative storage protein expression was primed and thus elevated in response to powdery mildew, suggesting that P. indica confers resistance reminiscent of induced systemic resistance (ISR).
Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/microbiologia , Ascomicetos/patogenicidade , Basidiomycota/fisiologia , Ciclopentanos/metabolismo , Oxilipinas/metabolismo , Arabidopsis/genética , Arabidopsis/imunologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Citoplasma/metabolismo , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Genótipo , Imunidade Inata , Mutação , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Ácido Salicílico/metabolismo , Transdução de SinaisRESUMO
Sieve tubes are transport conduits not only for photoassimilates but also for macromolecules and other compounds that are involved in sieve tube maintenance and systemic signalling. In order to gain sufficient amounts of pure phloem exudates from barley plants for analyses of the protein and mRNA composition, a previously described stylectomy set-up was optimized. Aphids were placed in sealed cages, which, immediately after microcauterization of the stylets, were flooded with water-saturated silicon oil. The exuding phloem sap was collected with a capillary connected to a pump. Using up to 30 plants and 600 aphids (Rhopalosiphum padi) in parallel, an average of 10 mul of phloem sap could be obtained within 6 h of sampling. In first analyses of the macromolecular content, eight so far unknown phloem mRNAs were identified by cDNA-amplified fragment length polymorphism. Transcripts in barley phloem exudates are related to metabolism, signalling, and pathogen defence, for example coding for a protein kinase and a pathogen- and insect-responsive WIR1A (wheat-induced resistance 1A)-like protein. Further, one-dimensional gel electrophoresis and subsequent partial sequencing by mass spectrometry led to the identification of seven major proteins with putative functions in stress responses and transport of mRNAs, proteins, and sugars. Two of the discovered proteins probably represent isoforms of a new phloem-mobile sucrose transporter. Notably, two-dimensional electrophoresis confirmed that there are >250 phloem proteins awaiting identification in future studies.
Assuntos
Afídeos/fisiologia , Expressão Gênica , Hordeum/genética , Floema/genética , Proteínas de Plantas/genética , RNA Mensageiro/genética , Animais , Hordeum/química , Hordeum/metabolismo , Espectrometria de Massas , Floema/química , Floema/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismoRESUMO
Piriformospora indica is a fungus of the order Sebacinales (Basidiomycota) infesting roots of mono- and dicotyledonous plants. Endophytic fungal colonization leads to enhanced plant growth while host cell death is required for proliferation in differentiated root tissue to form a mutualistic interaction. Colonization of barley roots by P. indica and related Sebacina vermifera strains also leads to systemic resistance against the leaf pathogenic fungus Blumeria graminis f.sp. hordei due to a yet unknown mechanism of induced resistance. In order to elucidate plant response pathways governed by these root endophytes, we analyzed gene expression in barley plants exhibiting an established symbiosis with P. indica 3 weeks after inoculation. P. indica-colonized roots showed no induction of defence-related genes, while other genes showed a differential regulation pattern indicating a faster P. indica-dependent root development. Gene expression analysis of leaves detected only few systemically induced mRNAs. Among differentially regulated transcripts, we characterized the pathogenesis-related gene HvPr17b and the molecular chaperone HvHsp70 in more detail. HvPr17b shows similarity with TaWCI5, a wheat gene inducible by chemical resistance inducers and salicylate, and was previously proven to exhibit antifungal activity against B. graminis. HvHsp70 is the first gene found to systemically indicate root colonization with endophytic fungi of the order Sebacinales. Both genes are discussed as markers for endophytic colonization and resulting systemic responses.
Assuntos
Basidiomycota/fisiologia , Hordeum/microbiologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Hordeum/metabolismo , Interações Hospedeiro-Patógeno , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA de Plantas/genética , RNA de Plantas/metabolismoRESUMO
Decontamination has moved into the top ranks of healthcare issues. In this article, Frank Waller highlights the need for strict adherence to decontamination and sterilisation procedures at all perioperative levels. He demonstrates how apparently minor operations can have serious consequences for both the patient and for perioperative staff where decontamination and sterilisation are inadequate.
Assuntos
Descontaminação/normas , Controle de Infecções/normas , Descontaminação/métodos , Humanos , Esterilização/normas , Instrumentos Cirúrgicos/microbiologia , Instrumentos Cirúrgicos/normasRESUMO
The increasing use of single use medical devices is being driven by a growing awareness of iatrogenic (from the Greek; caused by the doctor) and nosocomial infections. Public health perceptions relating to transmissible spongiform encephalopathies, specifically variant Creutzfeldt-Jakob disease (vCJD), the Human Immunodeficiency Virus (HIV) and Hepatitis B are high on the political agenda and a matter of concern to healthcare professionals.
Assuntos
Infecção Hospitalar/prevenção & controle , Equipamentos Descartáveis , Contaminação de Equipamentos/prevenção & controle , Controle de Infecções/normas , Enfermagem Perioperatória/métodos , Desinfecção/métodos , Reutilização de Equipamento , Feminino , Humanos , Controle de Infecções/tendências , Masculino , Salas Cirúrgicas , Formulação de Políticas , Medição de Risco , Gestão de Riscos , Esterilização/métodos , Gestão da Qualidade Total , Reino UnidoRESUMO
Piriformosporaindica is a basidiomycete fungus colonizing roots of a wide range of higher plants, including crop plants and the model plant Arabidopsis thaliana. Previous studies have shown that P. indica improves growth, and enhances systemic pathogen resistance in leaves of host plants. To investigate systemic effects within the root system, we established a hydroponic split-root cultivation system for Arabidopsis. Using quantitative real-time PCR, we show that initial P. indica colonization triggers a local, transient response of several defense-related transcripts, of which some were also induced in shoots and in distal, non-colonized roots of the same plant. Systemic effects on distal roots included the inhibition of secondary P. indica colonization. Faster and stronger induction of defense-related transcripts during secondary inoculation revealed that a P. indica pretreatment triggers root-wide priming of defense responses, which could cause the observed reduction of secondary colonization levels. Secondary P. indica colonization also induced defense responses in distant, already colonized parts of the root. Endophytic fungi therefore trigger a spatially specific response in directly colonized and in systemic root tissues of host plants.
Assuntos
Arabidopsis/microbiologia , Basidiomycota/fisiologia , Raízes de Plantas/microbiologia , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Basidiomycota/citologia , Basidiomycota/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Regulação da Expressão Gênica de Plantas , Hidroponia , Raízes de Plantas/citologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimentoRESUMO
Sphingolipids are implied in several regulatory processes, including cell death. Levels of the free sphingobase t18:0 (phytosphingosine) increase in Arabidopsis in response to the bacterial pathogen Pseudomonas syringae. To gain information on sphingobase-induced signaling, we determined kinetics of leaf reactive oxygen species (ROS) levels and cell death in response to specific sphingobases. t18:0, d18:0 and d17:1, but not d20:0, induced ROS and cell death within 1.5-2h. Early sphingobase-induced ROS production was independent of cell death induction and required the NADPH oxidase Respiratory Burst Oxidase Homolog D (RBOHD). Specific sphingobases can therefore induce cell death and require RBOHD for early ROS induction in plants.