Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Environ Sci Technol ; 57(10): 4133-4142, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36848500

RESUMO

Quantifying how contaminants change across life cycles of species that undergo metamorphosis is critical to assessing organismal risk, particularly for consumers. Pond-breeding amphibians can dominate aquatic animal biomass as larvae and are terrestrial prey as juveniles and adults. Thus, amphibians can be vectors of mercury exposure in both aquatic and terrestrial food webs. However, it is still unclear how mercury concentrations are affected by exogenous (e.g., habitat or diet) vs endogenous factors (e.g., catabolism during hibernation) as amphibians undergo large diet shifts and periods of fasting during ontogeny. We measured total mercury (THg), methylmercury (MeHg), and isotopic compositions (δ 13C, δ15N) in boreal chorus frogs (Pseudacris maculata) across five life stages in two Colorado (USA) metapopulations. We found large differences in concentrations and percent MeHg (of THg) among life stages. Frog MeHg concentrations peaked during metamorphosis and hibernation coinciding with the most energetically demanding life cycle stages. Indeed, life history transitions involving periods of fasting coupled with high metabolic demands led to large increases in mercury concentrations. The endogenous processes of metamorphosis and hibernation resulted in MeHg bioamplification, thus decoupling it from the light isotopic proxies of diet and trophic position. These step changes are not often considered in conventional expectations of how MeHg concentrations within organisms are assessed.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Poluentes Químicos da Água , Animais , Lagoas , Mercúrio/análise , Compostos de Metilmercúrio/metabolismo , Ecossistema , Cadeia Alimentar , Anfíbios/metabolismo , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Peixes/metabolismo
2.
Environ Sci Technol ; 54(15): 9228-9234, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32633495

RESUMO

Mercury (Hg) is a pervasive environmental pollutant and contaminant of concern for both people and wildlife that has been a focus of environmental remediation efforts for decades. A growing body of literature has motivated calls for revising Hg consumption advisories to co-consider selenium (Se) levels in seafood and implies that remediating aquatic ecosystems with ecosystem-scale Se additions could be a robust solution to Hg contamination. Provided that elevated Se concentrations are also known toxicological threats to aquatic animals, we performed a literature search to evaluate the strength of evidence supporting three assertions underpinning the ameliorating benefits of Se: (1) dietary Se reduces MeHg toxicity in consumers; (2) environmental Se reduces Hg bioaccumulation and biomagnification in aquatic food webs; and (3) Se inhibits Hg bioavailability to, and/or methylmercury production by, microbial communities. Limited or ambiguous support for each criterion indicates that many scientific uncertainties and gaps remain regarding Se mediation of Hg behavior and toxicity in abiotic and biotic compartments. Significantly more information is needed to provide a strong scientific basis for modifying current fish consumption advisories on the basis of Se:Hg ratios or for applying Se amendments to remediate Hg-contaminated ecosystems.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Selênio , Poluentes Químicos da Água , Animais , Ecossistema , Monitoramento Ambiental , Peixes , Humanos , Mercúrio/análise , Selênio/análise , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 54(7): 3951-3959, 2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32189492

RESUMO

Selenium is highly elevated in Appalachian streams and stream organisms that receive alkaline mine drainage from mountaintop removal coal mining compared to unimpacted streams in the region. Adult aquatic insects can be important vectors of waterborne contaminants to riparian food webs, yet pathways of Se transport and exposure of riparian organisms are poorly characterized. We investigated Se concentrations in stream and riparian organisms to determine whether mining extent increased Se uptake in stream biofilms and insects and if these insects were effective Se biovectors to riparian spiders. Biofilm Se concentration increased (p = 0.006) with mining extent, reaching a maximum value of 16.5 µg/g of dw. Insect and spider Se increased with biofilm Se (p = 0.004, p = 0.003), reaching 95 and 26 µg/g of dw, respectively, in mining-impacted streams. Adult insect biomass was not related to mining extent or Se concentrations in biofilm. Even though Se concentrations in aquatic insects were significantly and positively related to mining extent, aquatic insect Se flux was not associated with mining extent because the mass of emerging insects did not change appreciably over the mining gradient. Insect and spider Se concentrations were among the highest reported in the literature, regularly exceeding the bird Se dietary risk threshold of 5 µg/g of dw. Risks of Se exposure and toxicity related to mining are thus not constrained to aquatic systems but extend to terrestrial habitats and food webs.


Assuntos
Minas de Carvão , Aranhas , Animais , Região dos Apalaches , Cadeia Alimentar , Insetos , Rios
4.
Environ Sci Technol ; 54(18): 11313-11321, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32870672

RESUMO

Little is known about the underlying mechanisms governing the bioaccumulation of uranium (U) in aquatic insects. We experimentally parameterized conditional rate constants for aqueous U uptake, dietary U uptake, and U elimination for the aquatic baetid mayfly Neocloeon triangulifer. Results showed that this species accumulates U from both the surrounding water and diet, with waterborne uptake prevailing. Elevated dietary U concentrations decreased feeding rates, presumably by altering food palatability or impairing the mayfly's digestive processes, or both. Nearly 90% of the accumulated U was eliminated within 24 h after the waterborne exposure ceased, reflecting the desorption of weakly bound U from the insect's integument. To examine whether the experimentally derived rate constants for N. triangulifer could be generalized to baetid mayflies, mayfly U concentrations were predicted using the water chemistry and U measured in periphyton from springs in Grand Canyon (United States) and were compared to U concentrations in spring-dwelling mayflies. Predicted and observed mayfly U concentrations were in good agreement. Under the modeled site-specific conditions, waterborne U uptake accounted for 52-93% of the bioaccumulated U. U accumulation was limited in these wild populations due to a combination of factors including low concentrations of bioavailable dissolved U species, slow U uptake rates from food, and fast U elimination.


Assuntos
Ephemeroptera , Perifíton , Urânio , Poluentes Químicos da Água , Animais , Bioacumulação , Insetos
5.
Oecologia ; 187(1): 167-180, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29511855

RESUMO

In the Colorado Front Range (USA), disturbance history dictates stream planform. Undisturbed, old-growth streams have multiple channels and large amounts of wood and depositional habitat. Disturbed streams (wildfires and logging < 200 years ago) are single-channeled with mostly erosional habitat. We tested how these opposing stream states influenced organic matter, benthic macroinvertebrate secondary production, emerging aquatic insect flux, and riparian spider biomass. Organic matter and macroinvertebrate production did not differ among sites per unit area (m-2), but values were 2 ×-21 × higher in undisturbed reaches per unit of stream valley (m-1 valley) because total stream area was higher in undisturbed reaches. Insect emergence was similar among streams at the per unit area and per unit of stream valley. However, rescaling insect emergence to per meter of stream bank showed that the emerging insect biomass reaching the stream bank was lower in undisturbed sites because multi-channel reaches had 3 × more stream bank than single-channel reaches. Riparian spider biomass followed the same pattern as emerging aquatic insects, and we attribute this to bottom-up limitation caused by the multi-channeled undisturbed sites diluting prey quantity (emerging insects) reaching the stream bank (riparian spider habitat). These results show that historic landscape disturbances continue to influence stream and riparian communities in the Colorado Front Range. However, these legacy effects are only weakly influencing habitat-specific function and instead are primarily influencing stream-riparian community productivity by dictating both stream planform (total stream area, total stream bank length) and the proportional distribution of specific habitat types (pools vs riffles).


Assuntos
Rios , Aranhas , Animais , Colorado , Ecossistema , Dinâmica Populacional
6.
Environ Sci Technol ; 51(4): 2438-2446, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28078890

RESUMO

Insect metamorphosis often results in substantial chemical changes that can alter contaminant concentrations and fractionate isotopes. We exposed larval mayflies (Baetis tricaudatus) and their food (periphyton) to an aqueous zinc gradient (3-340 µg Zn/l) and measured zinc concentrations at different stages of metamorphosis: larval, subimago, and imago. We also measured changes in stable isotopes (δ15N and δ13C) in unexposed mayflies. Larval zinc concentrations were positively related to aqueous zinc, increasing 9-fold across the exposure gradient. Adult zinc concentrations were also positively related to aqueous zinc, but were 7-fold lower than larvae. This relationship varied according to adult substage and sex. Tissue concentrations in female imagoes were not related to exposure concentrations, but the converse was true for all other stage-by-sex combinations. Metamorphosis also increased δ15N by ∼0.8‰, but not δ13C. Thus, the main effects of metamorphosis on insect chemistry were large declines in zinc concentrations coupled with increased δ15N signatures. For zinc, this change was largely consistent across the aqueous exposure gradient. However, differences among sexes and stages suggest that caution is warranted when using nitrogen isotopes or metal concentrations measured in one insect stage (e.g., larvae) to assess risk to wildlife that feed on subsequent life stages (e.g., adults).


Assuntos
Ephemeroptera , Metamorfose Biológica/efeitos dos fármacos , Animais , Larva/efeitos dos fármacos , Metais/farmacologia , Zinco/farmacologia
7.
Environ Sci Technol ; 49(13): 7762-9, 2015 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-26018982

RESUMO

Opposing hypotheses posit that increasing primary productivity should result in either greater or lesser contaminant accumulation in stream food webs. We conducted an experiment to evaluate primary productivity effects on MeHg accumulation in stream consumers. We varied light for 16 artificial streams creating a productivity gradient (oxygen production =0.048-0.71 mg O2 L(-1) d(-1)) among streams. Two-level food webs were established consisting of phytoplankton/filter feeding clam, periphyton/grazing snail, and leaves/shredding amphipod (Hyalella azteca). Phytoplankton and periphyton biomass, along with MeHg removal from the water column, increased significantly with productivity, but MeHg concentrations in these primary producers declined. Methylmercury concentrations in clams and snails also declined with productivity, and consumer concentrations were strongly correlated with MeHg concentrations in primary producers. Heterotroph biomass on leaves, MeHg in leaves, and MeHg in Hyalella were unrelated to stream productivity. Our results support the hypothesis that contaminant bioaccumulation declines with stream primary production via the mechanism of bloom dilution (MeHg burden per cell decreases in algal blooms), extending patterns of contaminant accumulation documented in lakes to lotic systems.


Assuntos
Cadeia Alimentar , Compostos de Metilmercúrio/análise , Rios , Poluentes Químicos da Água/análise , Anfípodes/efeitos dos fármacos , Animais , Biomassa , Bivalves/efeitos dos fármacos , Bivalves/metabolismo , Eutrofização , Processos Heterotróficos , Compostos de Metilmercúrio/farmacocinética , Oxigênio/metabolismo , Fitoplâncton/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Caramujos/efeitos dos fármacos , Caramujos/metabolismo , Poluentes Químicos da Água/farmacocinética
8.
Ecol Appl ; 24(2): 235-43, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24689137

RESUMO

The effects of aquatic contaminants are propagated across ecosystem boundaries by aquatic insects that export resources and contaminants to terrestrial food webs; however, the mechanisms driving these effects are poorly understood. We examined how emergence, contaminant concentration, and total contaminant flux by adult aquatic insects changed over a gradient of bioavailable metals in streams and how these changes affected riparian web-building spiders. Insect emergence decreased 97% over the metal gradient, whereas metal concentrations in adult insects changed relatively little. As a result, total metal exported by insects (flux) was lowest at the most contaminated streams, declining 96% among sites. Spiders were affected by the decrease in prey biomass, but not by metal exposure or metal flux to land in aquatic prey. Aquatic insects are increasingly thought to increase exposure of terrestrial consumers to aquatic contaminants, but stream metals reduce contaminant flux to riparian consumers by strongly impacting the resource linkage. Our results demonstrate the importance of understanding the contaminant-specific effects of aquatic pollutants on adult insect emergence and contaminant accumulation in adults to predict impacts on terrestrial food webs.


Assuntos
Insetos/efeitos dos fármacos , Metais/toxicidade , Rios/química , Aranhas/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Cadeia Alimentar , Insetos/fisiologia , Metais/química , Dinâmica Populacional , Aranhas/fisiologia , Poluentes Químicos da Água/química , Poluição Química da Água
9.
Environ Sci Technol ; 48(18): 10957-65, 2014 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-25136925

RESUMO

Insects are integral to most freshwater and terrestrial food webs, but due to their accumulation of environmental pollutants they are also contaminant vectors that threaten reproduction, development, and survival of consumers. Metamorphosis from larvae to adult can cause large chemical changes in insects, altering contaminant concentrations and fractionation of chemical tracers used to establish contaminant biomagnification in food webs, but no framework exists for predicting and managing these effects. We analyzed data from 39 studies of 68 analytes (stable isotopes and contaminants), and found that metamorphosis effects varied greatly. δ(15)N, widely used to estimate relative trophic position in biomagnification studies, was enriched by ∼ 1‰ during metamorphosis, while δ(13)C used to estimate diet, was similar in larvae and adults. Metals and polycyclic aromatic hydrocarbons (PAHs) were predominantly lost during metamorphosis leading to ∼ 2 to 125-fold higher larval concentrations and higher exposure risks for predators of larvae compared to predators of adults. In contrast, manufactured organic contaminants (such as polychlorinated biphenyls) were retained and concentrated in adults, causing up to ∼ 3-fold higher adult concentrations and higher exposure risks to predators of adult insects. Both food web studies and contaminant management and mitigation strategies need to consider how metamorphosis affects the movement of materials between habitats and ecosystems, with special regard for aquatic-terrestrial linkages.


Assuntos
Poluentes Ambientais/farmacocinética , Cadeia Alimentar , Insetos/química , Metamorfose Biológica/fisiologia , Animais , Isótopos de Carbono/análise , Isótopos de Carbono/farmacocinética , Poluentes Ambientais/análise , Insetos/fisiologia , Marcação por Isótopo , Metais Pesados/análise , Metais Pesados/farmacocinética , Isótopos de Nitrogênio/análise , Isótopos de Nitrogênio/farmacocinética , Bifenilos Policlorados/análise , Bifenilos Policlorados/farmacocinética , Hidrocarbonetos Policíclicos Aromáticos/análise , Hidrocarbonetos Policíclicos Aromáticos/farmacocinética , Análise de Regressão
10.
Integr Environ Assess Manag ; 20(2): 562-573, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37664978

RESUMO

Quantifying the effects of environmental stressors on natural resources is problematic because of complex interactions among environmental factors that influence endpoints of interest. This complexity, coupled with data limitations, propagates uncertainty that can make it difficult to causally associate specific environmental stressors with injury endpoints. The Natural Resource Damage Assessment and Restoration (NRDAR) regulations under the Comprehensive Environmental Response, Compensation, and Liability Act and Oil Pollution Act aim to restore natural resources injured by oil spills and hazardous substances released into the environment; exploration of alternative statistical methods to evaluate effects could help address NRDAR legal claims. Bayesian networks (BNs) are statistical tools that can be used to estimate the influence and interrelatedness of abiotic and biotic environmental variables on environmental endpoints of interest. We investigated the application of a BN for injury assessment using a hypothetical case study by simulating data of acid mine drainage (AMD) affecting a fictional stream-dwelling bird species. We compared the BN-generated probability estimates for injury with a more traditional approach using toxicity thresholds for water and sediment chemistry. Bayesian networks offered several distinct advantages over traditional approaches, including formalizing the use of expert knowledge, probabilistic estimates of injury using intermediate direct and indirect effects, and the incorporation of a more nuanced and ecologically relevant representation of effects. Given the potential that BNs have for natural resource injury assessment, more research and field-based application are needed to determine their efficacy in NRDAR. We expect the resulting methods will be of interest to many US federal, state, and tribal programs devoted to the evaluation, mitigation, remediation, and/or restoration of natural resources injured by releases or spills of contaminants. Integr Environ Assess Manag 2024;20:562-573. Published 2023. This article is a U.S. Government work and is in the public domain in the USA. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Ecotoxicologia , Substâncias Perigosas , Teorema de Bayes , Medição de Risco/métodos , Recursos Naturais
11.
Sci Total Environ ; 912: 169230, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38072266

RESUMO

Tetragnathid spiders have been used as sentinels to study the biotransport of contaminants between aquatic and terrestrial environments because a significant proportion of their diet consists of adult aquatic insects. A key knowledge gap in assessing tetragnathid spiders as sentinels is understanding the consistency of the year-to-year relationship between contaminant concentrations in spiders and sediment, water, and macroinvertebrates. We collected five years of data over a seven-year investigation at a PCB contaminated-sediment site to investigate if concentrations in spiders were consistently correlated with concentrations in sediment, water, and aquatic macroinvertebrates. Despite significant year-to-year variability in spider PCB concentrations, they were not correlated with sediment concentrations (p = 0.186). However, spider PCB concentrations were significantly, positively correlated with PCB concentrations in water (p < 0.0001, annual r2 = 0.35-0.84) and macroinvertebrates (p < 0.0001; annual r2 = 0.59-0.71). Analysis of covariance (ANCOVA) showed that spider PCB concentrations varied consistently with water (ß = 0.63) and macroinvertebrate PCB concentrations (ß = 1.023) among years. Overall, this study filled a critical knowledge gap in the utilization of tetragnathid spiders as sentinels of aquatic pollution by showing that despite year-to-year changes in PCB concentrations across environmental compartments, consistent relationships existed between spiders and water and aquatic macroinvertebrates.


Assuntos
Aranhas , Água , Animais , Monitoramento Ambiental , Insetos , Poluição Ambiental , Cadeia Alimentar
13.
Environ Sci Technol ; 47(15): 8784-92, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23781899

RESUMO

Effects of contaminants on adult aquatic insect emergence are less well understood than effects on insect larvae. We compared responses of larval density and adult emergence along a metal contamination gradient. Nonlinear threshold responses were generally observed for larvae and emergers. Larval densities decreased significantly at low metal concentrations but precipitously at concentrations of metal mixtures above aquatic life criteria (cumulative criterion accumulation ratio (CCAR) ≥ 1). In contrast, adult emergence declined precipitously at low metal concentrations (CCAR ≤ 1), followed by a modest decline above this threshold. Adult emergence was a more sensitive indicator of the effect of low metals concentrations on aquatic insect communities compared to larvae, presumably because emergence is limited by a combination of larval survival and other factors limiting successful emergence. Thus effects of exposure to larvae are not manifest until later in life (during metamorphosis and emergence). This loss in emergence reduces prey subsidies to riparian communities at concentrations considered safe for aquatic life. Our results also challenge the widely held assumption that adult emergence is a constant proportion of larval densities in all streams.


Assuntos
Larva/efeitos dos fármacos , Metais/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Insetos/crescimento & desenvolvimento , Metais/análise , Poluentes Químicos da Água/análise
14.
Sci Rep ; 13(1): 18147, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875540

RESUMO

Thiamine (vitamin B1) is required by all living organisms in multiple metabolic pathways. It is scarce in natural systems, and deficiency can lead to reproductive failure, neurological issues, and death. One major cause of thiamine deficiency is an overreliance on diet items containing the enzyme thiaminase. Thiaminase activity has been noted in many prey fishes and linked to cohort failure in salmonid predators that eat prey fish with thiaminase activity, yet it is generally unknown whether evolutionary history, fish traits, and/or environmental conditions lead to production of thiaminase. We conducted literature and GenBank BLAST sequence searches to collect thiaminase activity data and sequence homology data in expressed protein sequences for 300 freshwater and marine fishes. We then tested whether presence or absence of thiaminase could be predicted by evolutionary relationships, trophic level, omega-3 fatty acid concentrations, habitat, climate, invasive potential, and body size. There was no evolutionary relationship with thiaminase activity. It first appears in Class Actinoptergyii (bony ray-finned fishes) and is present across the entire Actinoptergyii phylogeny in both primitive and derived fish orders. Instead, ecological factors explained the most variation in thiaminase: fishes were more likely to express thiaminase if they fed closer to the base of the food web, were high in polyunsaturated fatty acids, lived in freshwater, and were from tropical climates. These data provide a foundation for understanding sources of thiaminase leading to thiamine deficiency in fisheries and other organisms, including humans that eat uncooked fish.


Assuntos
Salmonidae , Deficiência de Tiamina , Humanos , Animais , Tiamina/metabolismo , Peixes/metabolismo , Hidrolases/metabolismo , Salmonidae/metabolismo
15.
Environ Toxicol Chem ; 42(9): 1982-1992, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36715411

RESUMO

Merolimnic insects can accumulate and transport considerable amounts of aquatic contaminants to terrestrial systems. The rate of contaminant biotransport, termed insect-mediated contaminant flux (IMCF), depends on emergent insect biomass and contaminant accumulation, both functions of environmental concentration. We developed a mathematical model of IMCF and apply it to three ecotoxicological studies obtained through the US Environmental Protection Agency's ECOTOX database to determine at which concentration maximum IMCF occurs. Model results demonstrate that the maximum IMCF depends on competing rates of biomass loss and contaminant accumulation and does not necessarily occur at the highest insect or environmental contaminant concentration. In addition, modeling results suggest that sublethal contaminant effects (e.g., decreased growth) on insect biomass can be an important and potentially underappreciated control on IMCF. Environ Toxicol Chem 2023;42:1982-1992. © 2023 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Poluentes Químicos da Água , Humanos , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Insetos , Biomassa
16.
Environ Toxicol Chem ; 42(2): 414-420, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36420666

RESUMO

Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) are persistent, toxic, and bioaccumulative. Currently, PCDD/F monitoring programs primarily use fish and birds with potentially large home ranges to monitor temporal trends over broad spatial scales; sentinel organisms that provide targeted sediment contaminant information across small geographic areas have yet to be developed. Riparian orb-weaving spiders, which typically have small home ranges and consume primarily adult aquatic insects, are potential PCDD/F sentinels. Recent studies have demonstrated that spider tissue concentrations indicate the source and magnitude of dioxin-like chlorinated compounds in contaminated sediments, including polychlorinated biphenyls (PCBs). Our aim in the present study was to assess the utility of riparian spiders as sentinels for PCDD/F-contaminated sediments. We measured PCDD/F (total [Σ] and homologs) in surface sediments and spiders collected from three sites within the St. Louis River basin (Minnesota and Wisconsin, USA). We then compared (1) patterns in ΣPCDD/F concentrations between sediment and spiders, (2) the distribution of homologs within sediments and spiders when pooled across sites, and (3) the relationship between sediment and spider concentrations of PCDD/F homologs across 13 stations sampled across the three sites. The ΣPCDD/F concentrations in sediment (mean ± standard error 286 591 ± 97 614 pg/g) were significantly higher than those in riparian spiders (2463 ± 977 pg/g, p < 0.001), but the relative abundance of homologs in sediment and spiders were not significantly different. Spider homolog concentrations were significantly and positively correlated with sediment concentrations across a gradient of sediment PCDD/F contamination (R2 = 0.47, p < 0.001). Our results indicate that, as has been shown for other legacy organic chemicals like PCBs, riparian spiders are suitable sentinels of PCDD/F in contaminated sediment. Environ Toxicol Chem 2023;42:414-420. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Dioxinas , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Aranhas , Animais , Sedimentos Geológicos/química , Aranhas/química , Bifenilos Policlorados/análise , Dibenzodioxinas Policloradas/toxicidade , Dibenzofuranos , Dibenzofuranos Policlorados
17.
Environ Sci Technol Lett ; 10(10): 891-896, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37840816

RESUMO

The transfer of aquatic contaminants, including mercury (Hg), to terrestrial food webs is an often-overlooked exposure pathway to terrestrial animals. While research has implemented the use of shoreline spiders to assess aquatic to terrestrial Hg transfer, it is unclear whether Hg sources, estimated from isotope ratios, can be successfully resolved to inform site assessments and remedy effectiveness. To examine aquatic to terrestrial Hg transfer, we collected shoreline spiders (Tetragnatha spp.) and aquatic insect larvae (suborder Anisoptera) across a mosaic of aquatic and shoreline habitats in the St. Louis River and Bad River, tributaries to Lake Superior. The fraction of industrial Hg in sediments was reflected in the δ202Hg values of aquatic dragonfly larvae and predatory fish, connecting benthic Hg sources to the aquatic food web. Shoreline spiders mirrored these aquatic Hg source signatures with highly positive correlations in δ202Hg between tetragnathids and dragonfly larvae (r2 = 0.90). Further assessment of different spider taxa (i.e., araneids and pisaurids) revealed that differences in prey consumption and foraging strategies resulted in isotope differences, highlighting the importance of spider taxa selection for Hg monitoring efforts.

18.
Freshw Sci ; 42(3): 247-267, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37842168

RESUMO

Streamflow-duration assessment methods (SDAMs) are rapid, indicator-based tools for classifying streamflow duration (e.g., intermittent vs perennial flow) at the reach scale. Indicators are easily assessed stream properties used as surrogates of flow duration, which is too resource intensive to measure directly for many reaches. Invertebrates are commonly used as SDAM indicators because many are not highly mobile, and different species have life stages that require flow for different durations and times of the year. The objectives of this study were to 1) identify invertebrate taxa that can be used as SDAM indicators to distinguish between stream reaches having intermittent and perennial flow, 2) to compare indicator strength across different taxonomic and numeric resolutions, and 3) to assess the relative importance of season and habitat type on the ability of invertebrates to predict streamflow-duration class. We used 2 methods, random forest models and indicator species analysis, to analyze aquatic and terrestrial invertebrate data (presence/absence, density, and biomass) at the family and genus levels from 370 samples collected from both erosional and depositional habitats during both wet and dry seasons. In total, 36 intermittent and 53 perennial reaches were sampled along 31 forested headwater streams in 4 level II ecoregions across the United States. Random forest models for family- and genus-level datasets had stream classification accuracy ranging from 88.9 to 93.2%, with slightly higher accuracy for density than for presence/absence and biomass datasets. Season (wet/dry) tended to be a stronger predictor of streamflow-duration class than habitat (erosional/depositional). Many taxa at the family (58.8%) and genus level (61.6%) were collected from both intermittent and perennial reaches, and most taxa that were exclusive to 1 streamflow-duration class were rarely collected. However, 23 family-level or higher taxa (20 aquatic and 3 terrestrial) and 44 aquatic genera were identified as potential indicators of streamflow-duration class for forested headwater streams. The utility of the potential indicators varied across level II ecoregions in part because of representation of intermittent and perennial reaches in the dataset but also because of variable ecological responses to drying among species. Aquatic invertebrates have been an important field indicator of perennial reaches in existing SDAMs, but our findings highlight how including aquatic and terrestrial invertebrates as indicators of intermittent reaches can further maximize the data collected for streamflow-duration classifications.

19.
Oecologia ; 168(1): 83-95, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21833642

RESUMO

Genetic diversity and species diversity are expected to covary according to area and isolation, but may not always covary with environmental heterogeneity. In this study, we examined how patterns of genetic and species diversity in stream fishes correspond to local and regional environmental conditions. To do so, we compared population size, genetic diversity and divergence in central stonerollers (Campostoma anomalum) to measures of species diversity and turnover in stream fish assemblages among similarly sized watersheds across an agriculture-forest land-use gradient in the Little Miami River basin (Ohio, USA). Significant correlations were found in many, but not all, pair-wise comparisons. Allelic richness and species richness were strongly correlated, for example, but diversity measures based on allele frequencies and assemblage structure were not. In-stream conditions related to agricultural land use were identified as significant predictors of genetic diversity and species diversity. Comparisons to population size indicate, however, that genetic diversity and species diversity are not necessarily independent and that variation also corresponds to watershed location and glaciation history in the drainage basin. Our findings demonstrate that genetic diversity and species diversity can covary in stream fish assemblages, and illustrate the potential importance of scaling observations to capture responses to hierarchical environmental variation. More comparisons according to life history variation could further improve understanding of conditions that give rise to parallel variation in genetic diversity and species diversity, which in turn could improve diagnosis of anthropogenic influences on aquatic ecosystems.


Assuntos
Biodiversidade , Cyprinidae/genética , Peixes/fisiologia , Variação Genética , Agricultura , Animais , Cyprinidae/fisiologia , Frequência do Gene , Genética Populacional , Modelos Genéticos , Ohio , Densidade Demográfica , Rios , Árvores
20.
Sci Total Environ ; 842: 156726, 2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-35716742

RESUMO

Microbial communities, including endosymbionts, play diverse and critical roles in host biology and reproduction, but contaminant exposure may cause an imbalance in the microbiome composition with subsequent impacts on host health. Here, we examined whether there was a significant alteration of the microbiome community within two taxa of riparian spiders (Tetragnathidae and Araneidae) from a site with historical polychlorinated biphenyl (PCB) contamination in southern Ontario, Canada. Riparian spiders specialize in the predation of adult aquatic insects and, as such, their contaminant levels closely track those of nearby aquatic ecosystems. DNA from whole spiders from sites with either low or high PCB contamination was extracted, and spider microbiota profiled by partial 16S rRNA gene amplicon sequencing. The most prevalent shift in microbial communities we observed was a large reduction in endosymbionts in spiders at the high PCB site. The abundance of endosymbionts at the high PCB site was 63 % and 98 % lower for tetragnathids and araneids, respectively, than at the low PCB site. Overall, this has potential implications for spider reproductive success and food webs, as riparian spiders are critical gatekeepers of energy and material fluxes at the land-water interface.


Assuntos
Microbiota , Bifenilos Policlorados , Aranhas , Animais , Insetos , Ontário , Bifenilos Policlorados/análise , RNA Ribossômico 16S
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa