Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Apoptosis ; 29(5-6): 816-834, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38281279

RESUMO

Doxorubicin (DOX) is an anthracycline antibiotic used as an antitumor treatment. However, its clinical application is limited due to severe side effects such as cardiotoxicity. In recent years, numerous studies have demonstrated that cellular aging has become a therapeutic target for DOX-induced cardiomyopathy. However, the underlying mechanism and specific molecular targets of DOX-induced cardiomyocyte aging remain unclear. Poly (ADP-ribose) polymerase (PARP) is a family of protein post-translational modification enzymes in eukaryotic cells, including 18 members. PARP-1, the most well-studied member of this family, has become a potential molecular target for the prevention and treatment of various cardiovascular diseases, such as DOX cardiomyopathy and heart failure. PARP-1 and PARP-2 share 69% homology in the catalytic regions. However, they do not entirely overlap in function. The role of PARP-2 in cardiovascular diseases, especially in DOX-induced cardiomyocyte aging, is less studied. In this study, we found for the first time that down-regulation of PARP-2 can inhibit DOX-induced cellular aging in cardiomyocytes. On the contrary, overexpression of PARP-2 can aggravate DOX-induced cardiomyocyte aging and injury. Further research showed that PARP-2 inhibited the expression and activity of SIRT1, which in turn was involved in the development of DOX-induced cardiomyocyte aging and injury. Our findings provide a preliminary experimental basis for establishing PARP-2 as a new target for preventing and treating DOX cardiomyopathy and related drug development.


Assuntos
Senescência Celular , Doxorrubicina , Miócitos Cardíacos , Poli(ADP-Ribose) Polimerases , Sirtuína 1 , Doxorrubicina/efeitos adversos , Doxorrubicina/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Miócitos Cardíacos/metabolismo , Sirtuína 1/metabolismo , Sirtuína 1/genética , Animais , Senescência Celular/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Ratos , Cardiotoxicidade/patologia , Cardiotoxicidade/metabolismo , Cardiotoxicidade/prevenção & controle , Cardiotoxicidade/etiologia , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Antibióticos Antineoplásicos/toxicidade , Antibióticos Antineoplásicos/efeitos adversos , Antibióticos Antineoplásicos/farmacologia , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/patologia , Cardiomiopatias/metabolismo , Cardiomiopatias/genética , Humanos
2.
Crit Rev Food Sci Nutr ; 63(3): 303-329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-34254536

RESUMO

Alginates are linear polymers comprising 40% of the dry weight of algae possess various applications in food and biomedical industries. Alginate oligosaccharides (AOS), a degradation product of alginate, is now gaining much attention for their beneficial role in food, pharmaceutical and agricultural industries. Hence this review was aimed to compile the information on alginate and AOS (prepared from seaweeds) during 1994-2020. As per our knowledge, this is the first review on the potential use of alginate oligosaccharides in different fields. The alginate derivatives are grouped according to their applications. They are involved in the isolation process and show antimicrobial, antioxidant, anti-inflammatory, antihypertension, anticancer, and immunostimulatory properties. AOS also have significant applications in prebiotics, nutritional supplements, plant growth development and others products.


Assuntos
Alginatos , Alga Marinha , Alginatos/metabolismo , Oligossacarídeos/metabolismo , Antioxidantes , Suplementos Nutricionais
3.
Crit Rev Food Sci Nutr ; 63(29): 10217-10229, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35549783

RESUMO

This review article depicts the possible replacement of staple cereal sources with some pseudocereals like Chia, Quinoa, Buckwheat, and Amaranth, which not only provide recommended daily allowance of all nutrients but also help to reduce the chances of many non-communicable infections owing to the presence of several bioactive compounds. These pseudocereals are neglected plant seeds and should be added in our routine diet. Besides, they can serve as nutraceuticals in combating various diseases by improving the health status of the consumers. The bioactive compounds like rutin, quercetin, peptide chains, angiotensin I, and many other antioxidants present in these plant seeds help to reduce the oxidative stress in the body which leads toward better health of the consumers. All these pseudocereals have high quantity of soluble fiber which helps to regulate bowel movement, control hypercholesterolemia (presence of high plasma cholesterol levels), hypertension (high blood pressure), and cardiovascular diseases. The ultimate result of consumption of pseudocereals either as a whole or in combination with true cereals as staple food may help to retain the integrity of the human body which increases the life expectancy by slowing down the aging process.


Assuntos
Grão Comestível , Sementes , Humanos , Sementes/química , Grão Comestível/química , Antioxidantes/análise , Suplementos Nutricionais , Dieta
4.
BMC Plant Biol ; 22(1): 108, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264115

RESUMO

BACKGROUND: Potassium (K) is important in the regulation of plant growth and development. It is the most abundant mineral element in kiwifruit, and its content increases during fruit ripening. However, how K+ transporter works in kiwifruit postharvest maturation is not yet clear. RESULTS: Here, 12 K+ transporter KT/HAK/KUP genes, AcKUP1 ~ AcKUP12, were isolated from kiwifruit, and their phylogeny, genomic structure, chromosomal location, protein properties, conserved motifs and cis-acting elements were analysed. Transcription analysis revealed that AcKUP2 expression increased rapidly and was maintained at a high level during postharvest maturation, consistent with the trend of K content; AcKUP2 expression was induced by ethylene, suggesting that AcKUP2 might play a role in ripening. Fluorescence microscopy showed that AcKUP2 is localised in the plasma membrane. Cis-elements, including DER or ethylene response element (ERE) responsive to ethylene, were found in the AcKUP2 promoter sequence, and ethylene significantly enhanced the AcKUP2 promoter activity. Furthermore, we verified that AcERF15, an ethylene response factor, directly binds to the AcKUP2 promoter to promote its expression. Thus, AcKUP2 may be an important potassium transporter gene which involved in ethylene-regulated kiwifruit postharvest ripening. CONCLUSIONS: Therefore, our study establishes the first genome-wide analysis of the kiwifruit KT/HAK/KUP gene family and provides valuable information for understanding the function of the KT/HAK/KUP genes in kiwifruit postharvest ripening.


Assuntos
Actinidia/crescimento & desenvolvimento , Actinidia/genética , Etilenos/metabolismo , Frutas/crescimento & desenvolvimento , Frutas/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Antiportadores de Potássio-Hidrogênio/metabolismo , China , Produtos Agrícolas/genética , Produtos Agrícolas/crescimento & desenvolvimento , Genes de Plantas , Desenvolvimento Vegetal/efeitos dos fármacos , Desenvolvimento Vegetal/genética , Antiportadores de Potássio-Hidrogênio/genética
5.
Crit Rev Food Sci Nutr ; : 1-29, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36533409

RESUMO

Diabetes mellitus is one of the major non-communicable diseases accounting for millions of death annually and increasing economic burden. Hyperglycemic condition in diabetes creates oxidative stress that plays a pivotal role in developing diabetes complications affecting multiple organs such as the heart, liver, kidney, retina, and brain. Green tea from the plant Camellia sinensis is a common beverage popular in many countries for its health benefits. Green tea extract (GTE) is rich in many biologically active compounds, e.g., epigallocatechin-3-O-gallate (EGCG), which acts as a potent antioxidant. Recently, several lines of evidence have shown the promising results of GTE and EGCG for diabetes management. Here, we have critically reviewed the effects of GTE and EGCC on diabetes in animal models and clinical studies. The concerns and challenges regarding the clinical use of GTE and EGCG against diabetes are also briefly discussed. Numerous beneficial effects of green tea and its catechins, particularly EGCG, make this natural product an attractive pharmacological agent that can be further developed to treat diabetes and its complications.

6.
Crit Rev Food Sci Nutr ; 62(29): 7976-7988, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33983074

RESUMO

Iturin, a metabolite produced by Bacillus subtilis, has a broad-spectrum antibacterial effect, and because they are secreted in the rhizosphere of plants, iturins are often mixed with many organic molecules. In recent years, people have improved their separation and purification methods but still cannot achieve simple and effective procedures, making Iturins an ideal biological control agent for insects and bacteria; commercial value still cannot be realized. With the in-depth studies of Iturins, its anti-cancer, hemolysis and other biological activities have gradually been discovered. This article reviews the branches of the Iturin family, structural features of these metabolite, separation and purification methods used for producing it, culture optimization, and various biological activities of the Iturin family, such as insecticidal, antibacterial, hemolytic and anticarcinogenic properties, among others have been summarized. Furthermore, this review revealed some commercial applications of Iturins and their relevance in research works. For example, in food packaging, clean water has good development potential.This can promote the commercial application of Iturins instead of other chemical and biological control agents that are environmentally friendly, pollution-free and have no side effects on humans. Furthermore, work documented anticancer, hemolytic and other biological activities of Iturin.


Assuntos
Agentes de Controle Biológico , Peptídeos Cíclicos , Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos , Humanos , Lipopeptídeos/farmacologia , Peptídeos Cíclicos/farmacologia , Água
7.
Crit Rev Food Sci Nutr ; 62(32): 8855-8865, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34107804

RESUMO

The COVID-19 pandemic has damaged the world's economy during 2020-2021, reduced the purchasing power of households, partially restricted international movements and trade (including food products) and damaged horticultural production. This resulted in uncertainty in the food business and caused food supply shocks. According to some scientists, business people, and politicians, this situation is a forerunner and warning for humanity to change its lifestyle by focusing on sustainable measures to prevent natural ecosystems damage. In line with this, the present review article focused on the significant impacts of the COVID-19 pandemic on horticultural production and some prevention measures. It has been scientifically confirmed that the postharvest losses of fruits and vegetables reach around 10-15% in developed countries and about 20-40% in developing countries, higher in some specific crops. It is believed that reducing these losses can help the world fight food supply shocks during the COVID-19 pandemic and customary conditions to reduce the pressure on natural resources. Therefore, the present paper aimed to highlight some critical handling practices against food supply shocks.


Assuntos
COVID-19 , Verduras , Humanos , Frutas , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pandemias/prevenção & controle , Ecossistema
8.
Crit Rev Food Sci Nutr ; 62(25): 7072-7116, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33840324

RESUMO

Marine organisms are considered a cache of biologically active metabolites with pharmaceutical, functional, and nutraceutical properties. Among these, marine bioactive peptides (MBAs) present in diverse marine species (fish, sponges, cyanobacteria, fungi, ascidians, seaweeds, & mollusks) have acquired attention owing to their broad-spectrum health-promoting benefits. Nowadays, scientists are keener exploring marine bioactive peptides precisely due to their unique structural and biological properties. These MBAs have reported ameliorating potential against different diseases like hypertension, diabetes, obesity, HIV, cancer, oxidation, and inflammation. Furthermore, MBAs isolated from various marine organisms may also have a beneficial role in the cosmetic, nutraceutical, and food industries. Few marine peptides and their derivative are approved for commercial use, while many MBAs are in various pre-clinical and clinical trials. This review mainly focuses on the diversity of marine bioactive peptides in marine organisms and their production procedures, such as chemical and enzymatic hydrolysis. Moreover, MBAs' therapeutic and biological potential has also been critically discussed herein, along with their status in drug discovery, pre-clinical and clinical trials.


Assuntos
Organismos Aquáticos , Peptídeos , Animais , Organismos Aquáticos/química , Descoberta de Drogas , Fungos , Humanos , Moluscos , Peptídeos/química
9.
J Sci Food Agric ; 102(8): 3140-3149, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34791654

RESUMO

BACKGROUND: Phomopsis stem-end rot caused by Diaporthe citri, causes significant commercial postharvest losses of pummelo fruit during storage. Carvacrol (CVR) is a known generally recognized as safe and has the ability to prolong the preservation of harvested fruits. In the present study, the inhibitory effects of CVR treatment at the appropriate concentration on Phomopsis stem-end rot development of harvested pummelo fruit inoculated with D. citri were evaluated by the amounts of cell wall components, the activities and gene expressions of related enzymes involved in cell wall modification and lignin biosynthesis. RESULTS: Results indicated that CVR completely inhibited D. citri growth in vitro at 200 mg L-1 and significantly controlled Phomopsis stem-end rot development in harvested pummelo. The CVR treatment delayed peel softening and browning, and retarded electrolyte leakage, superoxide radical (O2 •- ) production, and malondialdehyde content. The CVR-treated fruit maintained higher amounts of cell wall material, protopectin, hemicelluloses, and cellulose, but exhibited lower water-soluble pectin amount. Moreover, in D. citri-inoculated fruit, CVR treatment suppressed the activities and gene expressions of cell wall disassembling-enzymes, including pectin methylesterase, polygalacturonase, cellulase, and ß-galactosidase, while the development of cell wall degradation was reduced. Meanwhile, the CVR treatment enhanced the lignin biosynthesis by increasing the activities and up-regulating the gene expressions of phenylalanine ammonialyase, cinnamic alcohol dehydrogenase, and peroxidase accompanied with elevated level of lignin in pummelo fruit. CONCLUSION: The disease resistance to D. citri in pummelo fruit elicited by CVR treatment is related to delaying cell wall degradation and enhancing lignin biosynthesis. © 2021 Society of Chemical Industry.


Assuntos
Citrus , Frutas , Ascomicetos , Parede Celular/metabolismo , Citrus/metabolismo , Cimenos , Resistência à Doença , Lignina/metabolismo
10.
Phytother Res ; 34(11): 2857-2866, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32578328

RESUMO

The metabolic syndrome (MetS) is one of the major health hazards and an epidemic worldwide. There is no known best remedy has been defined yet. In the current investigation, we designed a meta-analysis of randomized clinical trials (RCTs) to evaluate the beneficial effects of tea consumption in alleviating metabolic syndromes. Herein, we accumulated the relevant literature available on PubMed and EMBASE databases from January, 2000 to August, 2019. RCTs bearing impact factor of at least 1 or more were studied for the effect of tea consumption on MetS. This meta-analysis suggested that tea consumption has beneficial effects on diastolic blood pressure (DBP), and this finding was characterized of all types of tea in the current study and also for body mass index (BMI) value. Furthermore, this analysis also found that black tea consumption has protective effects on systolic SBP, green tea reduces the incidence of diabetes and lower the level of low-density lipoprotein (LDL) cholesterol. These functions required BMI value at least 28 or higher. The meta data led us to conclude that tea consumption have protective effects on MetS, however, different types of tea might have different protective mechanisms on MetS, but, exact mechanisms are not yet clear and needs to be explored.


Assuntos
Síndrome Metabólica/tratamento farmacológico , Chá/química , Humanos , Ensaios Clínicos Controlados Aleatórios como Assunto
11.
Pestic Biochem Physiol ; 165: 104505, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32359555

RESUMO

Blue mold caused by Penicillium italicum is an important postharvest disease of citrus fruit. The antifungal activity of a flavonone pinocembroside compound obtained from the fruit of Ficus hirta Vahl., was evaluated against P. italicum. Pinocembroside showed antifungal activity against in vitro mycelial growth of P. italicum, with the minimum inhibitory concentration (MIC) and minimum fungicidal concentration (MFC) of 200 and 800 mg/L, respectively. The blue mold development on 'Newhall' navel oranges was inhibited by pinocembroside in a dose-dependent manner. Moreover, pinocembroside might exert its antifungal activity via membrane-targeted mechanism with increasing membrane permeability, reduction of antioxidant enzyme activity and acceleration of lipid peroxidation in the pathogen. This pioneering study suggested that pinocembroside suppressed postharvest blue mold by direct inhibition of P. italicum mycelial growth via membrane-targeting mechanism, thus providing a novel mode of action against traditional fungicides for controlling blue mold of citrus fruit.


Assuntos
Citrus sinensis , Citrus , Fungicidas Industriais , Penicillium , Frutas
12.
Molecules ; 23(10)2018 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-30297661

RESUMO

Medicinal plants have served humans since prehistoric times to treat various ailments. Both developed and underdeveloped countries rely on traditional systems of medication using natural sources from plants. Phyllanthus is one of the largest genus in the family Phyllanthaceae, comprising over 700 well known species cosmopolitan in distribution mainly in the tropics and subtropics. Phyllanthus species are being in constant used in traditional medications to cure an array of human diseases (constipation, inhalation related, arthritis, loss of appetite, injuries, conjunctivitis, diarrhoea, running nose, common cold, malaria, blennorrhagia, colic, diabetes mellitus, dysentery, indigestion, fever, gout, gonorrheal diseases of males and females, skin itching, jaundice, hepatic disorders, leucorrhea, vaginitis, menstrual irregularities, obesity, stomach pains, and tumors), confectionaries, food industry, and in some pesticides. Phyllanthus species are rich in diversity of phytochemicals e.g., tannins, terpenes, alkaloids, glycosidic compounds, saponins, and flavones etc. More in depth studies are a direly needed to identify more compounds with specific cellular functions to treat various ailments.


Assuntos
Medicina Tradicional , Phyllanthus/química , Extratos Vegetais/uso terapêutico , Plantas Medicinais/química , Alcaloides/química , Alcaloides/uso terapêutico , Humanos , Fitoterapia , Extratos Vegetais/química , Saponinas/química , Saponinas/uso terapêutico , Taninos/química , Taninos/uso terapêutico , Terpenos/química , Terpenos/uso terapêutico
13.
Parasitol Res ; 116(4): 1165-1174, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28160073

RESUMO

In schistosomiasis, egg deposition in the liver contributes to the formation of hepatic granuloma and fibrosis, which are the most serious clinical pathological features. It has been proposed that activation of the nuclear factor kappa B (NF-κB) signaling pathways is closely associated with the development of hepatic granuloma and fibrosis. Genistein has been shown to inhibit the activity of NF-κB signaling pathways, which might be a potential agent to protect against Schistosoma japonicum egg-induced liver granuloma and fibrosis. In this study, liver granuloma and fibrosis were induced by infecting BALB/c mice with 18 ± 3 cercariae of S. japonicum. At the beginning of egg granuloma formation (early phase genistein treatment from 4 to 6 weeks after infection) or after the formation of liver fibrosis (late phase genistein treatment from 6 to 10 weeks after infection), the infected mice were injected with genistein (25, 50 mg/kg). The results revealed that genistein treatment significantly decreased the extent of hepatic granuloma and fibrosis in infected mice. The activity of NF-κB signaling declined sharply after the treatment with genistein, as evidenced by the inhibition of NF-κB-p65, phospho-NF-κB-p65, and phospo-IκB-α expressions, as well as the expression of IκB-α and the messenger RNA (mRNA) expression of inflammatory cytokines (MCP1, TNFα, IL1ß, IL4, IL10) mediated by NF-κB signaling pathways in the early phase of the infection. Moreover, western blot and immunohistochemistry assays demonstrated that the contents of α-smooth muscle actin (α-SMA) and transforming growth factor-ß were dramatically reduced in liver tissue under the treatment of genistein in the late phase of the infection. At the same time, the mRNA expression of MCP1, TNFα, and IL10 was inhibited markedly. These results provided evidence that genistein reduces S. japonicum egg-induced liver granuloma and fibrosis, at least partly due to decreased NF-κB signaling, and subsequently decreased MCP1, TNFα, and IL10 expressions. This implies that genistein can be a potential natural agent against schistosomiasis.


Assuntos
Antiprotozoários/uso terapêutico , Genisteína/uso terapêutico , Granuloma/tratamento farmacológico , Quinase I-kappa B/antagonistas & inibidores , Cirrose Hepática/tratamento farmacológico , Schistosoma japonicum/efeitos dos fármacos , Esquistossomose Japônica/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição RelA/antagonistas & inibidores , Animais , Cercárias/metabolismo , Quimiocina CCL2/biossíntese , Quimiocina CCL2/genética , Ativação Enzimática , Granuloma/parasitologia , Granuloma/patologia , Interleucina-10/biossíntese , Interleucina-10/genética , Fígado/parasitologia , Fígado/patologia , Cirrose Hepática/parasitologia , Cirrose Hepática/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , RNA Mensageiro/metabolismo , Schistosoma japonicum/genética , Esquistossomose Japônica/parasitologia , Fator de Necrose Tumoral alfa/biossíntese , Fator de Necrose Tumoral alfa/genética
14.
Molecules ; 22(12)2017 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-29244766

RESUMO

A ¹H nuclear magnetic resonance (NMR)-based approach to metabolomics combined bioassay was used to elucidate the antifungal activity of cinnamaldehyde (the main active compound of Ramulus cinnamomi) isolated from Ramulus cinnamomi (RC). Orthogonal signal correction partial least-squares discriminant analysis (OSC-PLS-DA) of NMR data was constructed to analyze all the P. italicum data acquired from the control and treatment groups at 4, 8, and 12 h. Metabolic profiles disclosed metabolic changes that were related to the antifungal effects of cinnamaldehyde against P. italicum including oxidative stress, disorder of energy metabolism, amino acids, and nucleic acids metabolism in treatment group. This integrated metabolomics approach provided an effective way to detect the antifungal effects of cinnamaldehyde against P. italicum dynamically.


Assuntos
Acroleína/análogos & derivados , Antifúngicos/química , Antifúngicos/metabolismo , Cinnamomum/química , Medicamentos de Ervas Chinesas/química , Espectroscopia de Ressonância Magnética/métodos , Acroleína/química , Acroleína/metabolismo , Aminoácidos/metabolismo , Medicamentos de Ervas Chinesas/metabolismo , Metabolismo Energético/efeitos dos fármacos , Humanos , Metaboloma , Metabolômica , Ácidos Nucleicos/metabolismo , Estresse Oxidativo/efeitos dos fármacos
15.
Molecules ; 20(11): 19647-59, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26528961

RESUMO

The fruits of Ficus hirta (FH) display strong antifungal activity against Penicillium italicum and Penicillium digitatum. In order to optimize the extraction conditions of antifungal extracts from FH fruit, various extraction parameters, such as ethanol concentration, extraction time, solvent to solid ratio and temperature, were chosen to identify their effects on the diameters of inhibition zones (DIZs) against these two Penicillium molds. Response surface methodology (RSM) was applied to obtain the optimal combination of these parameters. Results showed that the optimal extraction parameters for maximum antifungal activity were: 90% (v/v) ethanol concentration, 65 min extraction time, 31 mL/g solvent to solid ratio and 51 °C temperature. Under the abovementioned extraction conditions, the experimental DIZs values obtained experimentally were 57.17 ± 0.75 and 39.33 ± 0.82 mm, which were very close to the values of 57.26 and 39.29 mm predicted by the model. Further, nine kinds of phytopathogens were tested in vitro to explore the antifungal activity of the FH extracts. It was found for the first time that the FH extracts showed significant inhibition on the growth of P. italicum, A. citri, P. vexans, P. cytosporella and P. digitatum.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Ficus/química , Frutas/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Etanol , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Modelos Teóricos , Solventes , Temperatura , Fatores de Tempo
16.
Int J Mol Sci ; 15(3): 3432-43, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24573253

RESUMO

Genistein, the predominant isoflavone found in soy products, has exerted its anticarcinogenic effect in many different tumor types in vitro and in vivo. Accumulating evidence in recent years has strongly indicated the existence of cancer stem cells in gastric cancer. Here, we showed that low doses of genistein (15 µM), extracted from Millettia nitida Benth var hirsutissima Z Wei, inhibit tumor cell self-renewal in two types of gastric cancer cells by colony formation assay and tumor sphere formation assay. Treatment of gastric cancer cells with genistein reduced its chemoresistance to 5-Fu (fluorouracil) and ciplatin. Further results indicated that the reduced chemoresistance may be associated with the inhibition of ABCG2 expression and ERK 1/2 activity. Furthermore, genistein reduced tumor mass in the xenograft model. Together, genistein inhibited gastric cancer stem cell-like properties and reduced its chemoresistance. Our results provide a further rationale and experimental basis for using the genistein to improve treatment of patients with gastric cancer.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Genisteína/farmacologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Neoplasias Gástricas/tratamento farmacológico , Ensaios Antitumorais Modelo de Xenoenxerto , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Antineoplásicos/farmacologia , Western Blotting , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Relação Dose-Resposta a Droga , Feminino , Fluoruracila/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Genisteína/química , Humanos , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Estrutura Molecular , Proteínas de Neoplasias/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Ensaio Tumoral de Célula-Tronco
17.
Curr Protein Pept Sci ; 25(1): 4-11, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37183462

RESUMO

The human genetic structure undergoes continuous wear and tear process due to the mere presence of extrinsic as well as intrinsic factors. In normal physiological cells, DNA damage initiates various checkpoints that may activate the repair system or induce apoptosis that helps maintain cellular integrity. While in cancerous cells, due to alterations in signaling pathways and defective checkpoints, there exists a marked deviation of error-free DNA repairing/synthesis. Currently, cancer therapy targeting the DNA damage response shows significant therapeutic potential by tailoring the therapy from non-specific to tumor-specific activity. Recently, numerous drugs that target the DNA replicating enzymes have been approved or some are under clinical trial. Drugs like PARP and PARG inhibitors showed sweeping effects against cancer cells. This review highlights the mechanistic study of different drug categories that target DNA replication and thus depicts the futuristic approach of targeted therapy.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Dano ao DNA , Reparo do DNA , Replicação do DNA , DNA
18.
Planta Med ; 79(17): 1674-9, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24108434

RESUMO

Two new phenolics, a 3-substituted coumarin, 7,8-dihydroxy-3-carboxymethylcoumarin-5-carboxylic acid, and a hydrolyzable tannin, namely punicatannin C, together with 10 known phenolics, were isolated from the flowers of pomegranate (Punica granatum). Their structures were determined on the basis of extensive spectroscopic analyses including HRESIMS, 1D and 2D NMR data. All the isolates were evaluated for in vitro α-glucosidase inhibitory activities.


Assuntos
Cumarínicos/farmacologia , Inibidores Enzimáticos/isolamento & purificação , Flores/química , Taninos Hidrolisáveis/farmacologia , Lythraceae/química , Extratos Vegetais/farmacologia , alfa-Glucosidases/farmacologia , Animais , Cumarínicos/química , Cumarínicos/isolamento & purificação , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/isolamento & purificação , Estrutura Molecular , Fenóis/química , Fenóis/isolamento & purificação , Fenóis/farmacologia , Extratos Vegetais/química , Ratos , alfa-Glucosidases/química , alfa-Glucosidases/isolamento & purificação
19.
Biomed Res Int ; 2023: 6407588, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36726839

RESUMO

Purpose: To screen the main active components of Citrus aurantium through a network pharmacology approach, construct a component-disease target network, explore its molecular mechanism for the treatment of non-small-cell lung cancer (NSCLC), and validate it experimentally. Methods: The active ingredients in Citrus aurantium and the targets of Citrus aurantium and NSCLC were collected through the Traditional Chinese Medicine Systematic Pharmacology Database and Analysis Platform (TCMSP), GeneCards, and OMIM databases. The protein interaction network was constructed using the STRING database, and the component-disease relationship network graph was analyzed using Cytoscape 3.9.1. The Metascape database can be used for GO and KEGG enrichment analyses. The Kaplan-Meier plotter was applied for overall survival analysis of key targets of Citrus aurantium in the treatment of NSCLC. Real-time PCR (RT-PCR) and Western blotting were used to determine the mRNA and protein levels of key targets of Citrus aurantium for the treatment of NSCLC. Results: Five active ingredients of Citrus aurantium were screened, and 54 potential targets for the treatment of NSCLC were found, of which the key ingredient was nobiletin and the key targets are TP53, CXCL8, ESR1, PPAR-α, and MMP9. GO and KEGG enrichment analyses indicated that the mechanism of nobiletin in treating NSCLC may be related to the regulation of cancer signaling pathway, phosphatidylinositol-3 kinase (PI3K)/protein kinase B (Akt) signaling pathway, lipid and atherosclerosis signaling pathway, and neurodegenerative signaling pathway. The experimental results showed that nobiletin could inhibit the proliferation of NSCLC cells and upregulate the levels of P53 and PPAR-α and suppress the expression of MMP9 (P < 0.05). Conclusion: Citrus aurantium can participate in the treatment of NSCLC through multiple targets and pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Citrus , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Metaloproteinase 9 da Matriz , Receptores Ativados por Proliferador de Peroxissomo , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Medicina Tradicional Chinesa , Medicamentos de Ervas Chinesas/farmacologia , Simulação de Acoplamento Molecular
20.
Curr Neuropharmacol ; 21(4): 777-786, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825704

RESUMO

Phytochemicals or natural products have been studied extensively for their potential in the treatment of neurodegenerative diseases (NDs) like Parkinson's disease, Alzheimer's disease, etc. The neuronal structure loss and progressive dysfunction are the main characteristics of these diseases. In spite of impressive and thorough knowledge of neurodegenerative molecular pathways, little advancement has been found in the treatment of the same. Moreover, it was proved that natural products can be used efficiently in the treatment of NDs while certain issues regarding the patient's safety and clinical data are still existing. As ND is a bunch of diseases and it will start the myriad of pathological processes, active targeting of the molecular pathway behind ND will be the most efficient strategy to treat all ND-related diseases. The targeting pathway must prevent cell death and should restore the damaged neurons. In the treatment of ND and related diseases, natural products are playing the role of neuroprotective agents. This review will target the therapeutic potential of various phytochemicals which shows neuroprotective action.


Assuntos
Doença de Alzheimer , Produtos Biológicos , Fármacos Neuroprotetores , Doença de Parkinson , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Alzheimer/tratamento farmacológico , Compostos Fitoquímicos/química , Compostos Fitoquímicos/uso terapêutico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/química , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa