Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Arch Insect Biochem Physiol ; 111(2): e21952, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35909310

RESUMO

Papilio machaon was assigned as the type species for all butterflies by Linnaeus and P. bianor is a congener but exhibits a great difference in morphology (especially larva and adult color pattern) and larval host plants from P. machaon. Thus, they are the ideal models to investigate genetic mechanisms underlying morphology and plasticity between congeners. The reference genomes of both species were dissected in our previous studies, but little is known about their regulatory genome and the epigenetic regulation of gene expression throughout developmental stages. Here, we profiled the chromatin accessibility and gene expression of three developmental stages (the 4th instar larva [L4], the 5th instar larva [L5], and pupa [P]) using transposase accessible chromatin sequencing (ATAC-seq) and RNA-seq. Results showed that many accessible chromatin peaks were identified at three developmental stages (peak number, P. machaon: 44,977 [L4], 36,919 [L5], 47,147 [P]; P. bianor: 20,341 [L4], 44,668 [L5], 62,249 [P]). Moreover, the number of differentially accessible peaks and differentially expressed genes between larval stages of each butterfly species are significantly fewer than that between larval and pupal stages, suggesting a higher similarity within larvae and a significant difference between larvae and pupae. This study added the annotated information of chromatin accessibility genome-wide of the two papilionid species and will promote the investigation of gene regulation in butterfly evolution.


Assuntos
Borboletas , Animais , Borboletas/genética , Cromatina/genética , Epigênese Genética , Larva/genética , Pupa/genética
2.
Zool Res ; 43(3): 367-379, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35355458

RESUMO

Swallowtail butterflies (Papilionidae) are a historically significant butterfly group due to their colorful wing patterns, extensive morphological diversity, and phylogenetically important position as a sister group to all other butterflies and have been widely studied regarding ecological adaption, phylogeny, genetics, and evolution. Notably, they contain a unique class of pigments, i.e., papiliochromes, which contribute to their color diversity and various biological functions such as predator avoidance and mate preference. To date, however, the genomic and genetic basis of their color diversity and papiliochrome origin in a phylogenetic and evolutionary context remain largely unknown. Here, we obtained high-quality reference genomes of 11 swallowtail butterfly species covering all tribes of Papilioninae and Parnassiinae using long-read sequencing technology. Combined with previously published butterfly genomes, we obtained robust phylogenetic relationships among tribes, overcoming the challenges of incomplete lineage sorting (ILS) and gene flow. Comprehensive genomic analyses indicated that the evolution of Papilionidae-specific conserved non-exonic elements (PSCNEs) and transcription factor binding sites (TFBSs) of patterning and transporter/cofactor genes, together with the rapid evolution of transporters/cofactors, likely promoted the origin and evolution of papiliochromes. These findings not only provide novel insights into the genomic basis of color diversity, especially papiliochrome origin in swallowtail butterflies, but also provide important data resources for exploring the evolution, ecology, and conservation of butterflies.


Assuntos
Borboletas , Animais , Borboletas/genética , Filogenia , Pigmentação/genética , Asas de Animais/anatomia & histologia
3.
Front Genet ; 12: 795115, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35186009

RESUMO

Pupal color polyphenism in Papilio butterflies, including green, intermediate, or brown, is an excellent study system for understanding phenotypic plasticity. Previous studies suggested that development of brown pupae may be controlled by a hormone called pupal-cuticle-melanizing-hormone (PCMH) which is synthesized and secreted from brain-suboesophageal ganglion and prothoracic ganglion complexes (Br-SG-TG1) during the pre-pupa stage. However, detailed molecular mechanisms of neuroendocrine regulation in pupal color development remain unknown. In this study, we integrated the expression profiles of transcriptome and proteome at pre-pupa stages [2 h after gut purge (T1) and 3 h after forming the garter around the body (T2)] and pigmentation stages [10 h after ecdysis (T3) and 24 h after ecdysis (T4)] to identify important genes and pathways underlying the development of green and brown pupa in the swallowtail butterfly Papilio xuthus. Combined comparisons of each developmental stage and each tissue under green and brown conditions, a total of 1042 differentially expressed genes (DEGs) and 430 different abundance proteins (DAPs) were identified. Weighted gene co-expression network analysis (WGCNA) and enrichment analysis indicate that these DEGs were mainly related to oxidation-reduction, structural constituent of cuticle, and pigment binding. Soft clustering by Mfuzz and enrichment analysis indicate that these DAPs are mainly involved in tyrosine metabolism, insect hormone biosynthesis, and melanogenesis. By homologous alignment, we further identified those genes encoding neuropeptides (51), GPCRs (116), G-proteins (8), cuticular proteins (226), chitinases (16), and chitin deacetylases (8) in the whole genome of P. xuthus and analyzed their expression profiles. Although we identified no gene satisfying with hypothesized expression profile of PCMH, we found some genes in the neuropeptide cascade showed differentially expressed under two pupal color conditions. We also found that Toll signaling pathway genes, juvenile hormone (JH) related genes, and multiple cuticular proteins play important roles in the formation of selective pupal colors during the prepupal-pupal transition. Our data also suggest that both green and brown pupa include complex pigment system that is regulated by genes involved in black, blue, and yellow pigments. Our results provide important insights into the evolution of pupal protective colors among swallowtail butterflies.

4.
Zool Res ; 42(5): 614-619, 2021 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-34402607

RESUMO

Butterflies are diverse in virtually all aspects of their ontogeny, including morphology, life history, and behavior. However, the developmental regulatory mechanisms underlying the important phenotypic traits of butterflies at different developmental stages remain unknown. Here, we investigated the developmental regulatory profiles of butterflies based on transposase accessible chromatin sequencing (ATAC-seq) at three developmental stages in two representative species ( Papilio xuthus and Kallima inachus). Results indicated that 15%-47% of open chromatin peaks appeared in associated genes located 3 kb upstream (i.e., promoter region) of their transcription start site (TSS). Comparative analysis of the different developmental stages indicated that chromatin accessibility is a dynamic process and associated genes with differentially accessible (DA) peaks show functions corresponding to their phenotypic traits. Interestingly, the black color pattern in P. xuthus 4th instar larvae may be attributed to promoter peak-related genes involved in the melanogenesis pathway. Furthermore, many longevity genes in 5th instar larvae and pupae showed open peaks 3 kb upstream of their TSS, which may contribute to the overwintering diapause observed in K. inachus adults. Combined with RNA-seq analysis, our data demonstrated that several genes enriched in the melanogenesis and longevity pathways also exhibit higher expression, confirming that the expression of genes may be closely related to their phenotypic traits. This study offers new insights into larval cuticle color and adult longevity in butterflies and provides a resource for investigating the developmental regulatory mechanisms underlying butterfly ontogeny.


Assuntos
Borboletas/fisiologia , Cromatina/metabolismo , Pigmentação/genética , Pigmentos Biológicos/metabolismo , Transcriptoma , Animais , Borboletas/anatomia & histologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Tegumento Comum/fisiologia , Larva/anatomia & histologia , Larva/fisiologia , Pigmentação/fisiologia
5.
Eur J Med Chem ; 45(11): 5108-12, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20817326

RESUMO

Twenty pseudo-peptide thioureas IIa-l containing α-aminophosphonate moiety were synthesized from the reaction of chiral α-amino carboxamide derivatives Ia-c with O,O'-dialkylisothiocyanato(phenyl)methylphosphonate 5. The synthesized compounds were completely characterized by elemental analysis, physical and spectral (IR, (1)H NMR, (13)C NMR) data. According to the preliminary studies on antitumor activities, compounds IIa-l could inhibit tumor cells PC3, Bcap37 and BGC823. These compounds displayed low to high activity by MTT assays. Among them, L-IIk, D-IIa and D-IIe were identified as potent inhibitors, with IC(50) values ranging from 4.7 to 11.2 µM according to in vitro assay.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Organofosfonatos/química , Tioureia/síntese química , Tioureia/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Técnicas In Vitro , Espectroscopia de Ressonância Magnética , Proibitinas , Espectrofotometria Infravermelho , Relação Estrutura-Atividade , Tioureia/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa