Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Scand J Gastroenterol ; 59(4): 480-488, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38179969

RESUMO

Objective: To examine the impact of moderate alcohol consumption on the progression of chronic kidney disease (CKD) in individuals diagnosed with non-alcoholic fatty liver disease (NAFLD), as NAFLD has been identified as an autonomous risk factor for CKD and previous research has demonstrated a reduction in overall mortality in NAFLD patients who consume alcohol in moderation.Methods: This study included participants from ten consecutive rounds of the National Health and Nutrition Examination Survey (NHANES:1998-2018). Multivariate logistic regression models were employed to assess the impact of moderate alcohol consumption on chronic kidney disease (CKD) in both male and female populations. Subgroup analysis was conducted by categorizing patients with non-alcoholic fatty liver disease (NAFLD) based on the Fibrosis-4 (FIB-4) index.Results: 17040 participants were eligible to be included in the study. The logistic regression analysis model showed that moderate alcohol consumption was a protective factor for CKD in male NAFLD patients, with an unadjusted OR: 0.37 (0.22,0.65), and p < 0.001. After further adjustment, the association persisted. However, the association was not significant in female patients with NAFLD. Among men with low risk of liver fibrosis group, moderate alcohol consumption remained a protective factor for CKD (OR = 0.32, 95% CI 0.12-0.84, p = 0.02), but the association was not significant in the high risk of liver fibrosis group. In female patients, both moderate alcohol consumption and excessive alcohol consumption were not significantly associated with CKD in either the low-risk group or the high-risk group.Conclusion: Moderate alcohol consumption is associated with a lower prevalence of CKD in men with NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Insuficiência Renal Crônica , Humanos , Masculino , Feminino , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Inquéritos Nutricionais , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/etiologia , Consumo de Bebidas Alcoólicas/efeitos adversos , Consumo de Bebidas Alcoólicas/epidemiologia , Cirrose Hepática/complicações
2.
Artigo em Inglês | MEDLINE | ID: mdl-38656637

RESUMO

AIM: Aberrant expression of ATPase sarcoplasmic/endoplasmic retic Ca2+ transporting 2 (ATP2A2) has attracted attention for its pathophysiologic role in pulmonary hypertension (PH). Several miRNAs, including miR-210-5p, have also been reported to be pathogenic factors in PH, but their exact mechanisms remain unknown. This study aimed to elucidate the potential mechanisms of miR-210-5p and ATP2A2 in MCT-induced PH. METHODS: Eighteen Sprague-Dawley rats were randomly divided into two groups-monoclonal (MCT) group and control group-and then administered MCT (60 mg/kg) and saline, respectively. mPAP, PVR, RVHI, WT%, and WA% were significantly increased in PH rats after 3 weeks, confirming that the modeling of PH rats was successful. Subsequently, we determined the expression of ATP2A2 and miR-210-5p in lung tissues using WB and qRT-PCR methods. We established an in vitro model using BMP4 and TGF-ß1 treatment of pulmonary artery smooth muscle cells (PASMCs) and examined the expression of ATP2A2 and miR-210-5p using the same method. To further elucidate the regulatory relationship between ATP2A2 and miR-210-5p, we altered the expression level of miR-210-5p and detected the corresponding changes in ATP2A2 levels. In addition, we demonstrated the relationship by dual luciferase experiments. Finally, the effect of silencing ATP2A2 could be confirmed by the level of cell membrane Ca2+ in PAMSCs. RESULTS: Up-regulation of miR-210-5p and down-regulation of ATP2A2 were observed in the MCT group compared with the control group, which was confirmed in the in vitro model. In addition, elevated miR-210-5p expression decreased the level of ATP2A2 while increasing the proliferation of PASMCs, and the results of the dual luciferase assay further confirmed that ATP2A2 is a downstream target of miR-210-5p. Additionally, silencing ATP2A2 resulted in increased cytoplasmic Ca2+ levels in PAMSCs. CONCLUSION: In MCT-induced PH, miR-210-5p promotes pulmonary vascular remodeling by inhibiting ATP2A2.

3.
Adv Mater ; : e2405885, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39082203

RESUMO

Near-field radiative heat transfer (NFRHT) can exceed the blackbody limit by several orders of magnitude owing to the tunneling evanescent waves. Exploiting this near-field enhancement holds significant potential for emerging technologies. It has been suggested that coupled polaritons can give rise to orders of magnitude enhancement of NFRHT. However, a thorough experimental verification of this phenomenon is still missing. Here this work experimentally shows that NFRHT mediated by coupled polaritons in millimeter-size graphene/SiC/SiO2 composite devices in planar plate configuration can realize about 302.8 ±  35.2-fold enhancement with respect to the blackbody limit at a gap distance of 87  ±  0.8 nm. The radiative thermal conductance and effective gap heat transfer coefficient can reach unprecedented values of 0.136 WK-1 and 5440 Wm-2K-1. Additionally, a scattering-type scanning near-field optical measurement, in conjunction with full-wave numerical simulations, provides further evidence for the coupled polaritonic characteristics of the devices. Notably, this work experimentally demonstrates dynamic regulation of NFRHT can be achieved by modulating the bias voltage, leading to an ultrahigh dynamic range of ≈4.115. This work ambiguously elucidates the important role of coupled polaritons in NFRHT, paving the way for the manipulation of nanoscale heat transport, energy conversion, and thermal computing via the strong coupling effect.

4.
Nanoscale Adv ; 6(12): 3073-3081, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38868825

RESUMO

All-inorganic metal halide perovskites (MHPs) have attracted increasing attention because of their high thermal stability and band gap tunability. Among them, CsPbCl3 is considered a promising semiconductor material for visible-ultraviolet dual-band photodetectors because of its excellent photoelectric properties and suitable band gap value. In this work, we fabricated a visible-ultraviolet dual-band photodetector based on a CsPbCl3/p-GaN heterojunction using the spin coating method. The formation of the heterojunction enables the device to exhibit obvious dual-band response behavior at positive and negative bias voltages. At the same time, the dark current of the device can be as low as 2.42 × 10-9 A, and the corresponding detection rate can reach 5.82 × 1010 Jones. In addition, through simulation calculations, it was found that the heterojunction has a type II energy band arrangement, and the heterojunction response band light absorption is significantly enhanced. The type II energy band arrangement will separate electron-hole pairs more effectively, which will help improve device performance. The successful implementation of visible-ultraviolet dual-band photodetectors based on a CsPbCl3/p-GaN heterojunction provides guidance for the application of all-inorganic MHPs in the field of multi-band photodetectors.

5.
Comput Struct Biotechnol J ; 24: 493-506, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39076168

RESUMO

Transjugular intrahepatic portosystemic shunt (TIPS) is an essential procedure for the treatment of portal hypertension but can result in hepatic encephalopathy (HE), a serious complication that worsens patient outcomes. Investigating predictors of HE after TIPS is essential to improve prognosis. This review analyzes risk factors and compares predictive models, weighing traditional scores such as Child-Pugh, Model for End-Stage Liver Disease (MELD), and albumin-bilirubin (ALBI) against emerging artificial intelligence (AI) techniques. While traditional scores provide initial insights into HE risk, they have limitations in dealing with clinical complexity. Advances in machine learning (ML), particularly when integrated with imaging and clinical data, offer refined assessments. These innovations suggest the potential for AI to significantly improve the prediction of post-TIPS HE. The study provides clinicians with a comprehensive overview of current prediction methods, while advocating for the integration of AI to increase the accuracy of post-TIPS HE assessments. By harnessing the power of AI, clinicians can better manage the risks associated with TIPS and tailor interventions to individual patient needs. Future research should therefore prioritize the development of advanced AI frameworks that can assimilate diverse data streams to support clinical decision-making. The goal is not only to more accurately predict HE, but also to improve overall patient care and quality of life.

6.
Gels ; 9(12)2023 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-38131973

RESUMO

The hard-healing chronic wounds of diabetics are still one of the most intractable problems in clinical skin injury repair. Wound microenvironments directly affect wound healing speed, but conventional dressings exhibit limited efficacy in regulating the wound microenvironment and facilitating healing. To address this serious issue, we designed a thermo-sensitive drug-controlled hydrogel with wound self-adjusting effects, consisting of a sodium alginate (SA), Antheraeapernyi silk gland protein (ASGP) and poly(N-isopropylacrylamide) (PNIPAM) for a self-adjusting microenvironment, resulting in an intelligent releasing drug which promotes skin regeneration. PNIPAM has a benign temperature-sensitive effect. The contraction, drugs and water molecules expulsion of hydrogel were generated upon surpassing lower critical solution temperatures, which made the hydrogel system have smart drug release properties. The addition of ASGP further improves the biocompatibility and endows the thermo-sensitive drug-controlled hydrogel with adhesion. Additionally, in vitro assays demonstrate that the thermo-sensitive drug-controlled hydrogels have good biocompatibility, including the ability to promote the adhesion and proliferation of human skin fibroblast cells. This work proposes an approach for smart drug-controlled hydrogels with a thermo response to promote wound healing by self-adjusting the wound microenvironment.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa