Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Heliyon ; 10(10): e30969, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38813202

RESUMO

Snake venoms, comprising a complex array of protein-rich components, an important part of which are snake venom metalloproteinases (SVMPs). These SVMPs, which are predominantly isolated from viperid venoms, are integral to the pathology of snakebites. However, SVMPs derived from elapid venoms have not been extensively explored, and only a handful of SVMPs have been characterized to date. Atrase A, a nonhemorrhagic P-III class metalloproteinase from Naja atra venom, exhibits weak proteolytic activity against fibrinogen in vitro but has pronounced anticoagulant effects in vivo. This contrast spurred investigations into its anticoagulant mechanisms. Research findings indicate that atrase A notably extends the activated partial thromboplastin time, diminishes fibrinogen levels, and impedes platelet aggregation. The anticoagulant action of atrase A primarily involves inhibiting coagulation factor VIII and activating the endogenous fibrinolytic system, which in turn lowers fibrinogen levels. Additionally, its effect on platelet aggregation further contributes to its anticoagulant profile. This study unveils a novel anticoagulant mechanism of atrase A, significantly enriching the understanding of the roles of cobra venom metalloproteinases in snake venom. Furthermore, these findings underscore the potential of atrase A as a novel anticoagulant drug, offering insights into the functional evolutions of cobra venom metalloproteinases.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa