RESUMO
Acute methicillin-resistant Staphylococcus aureus (MRSA) pneumonia is a common and serious lung infection with high morbidity and mortality rates. Due to the increasing antibiotic resistance, toxicity, and pathogenicity of MRSA, there is an urgent need to explore effective antibacterial strategies. In this study, we developed a dry powder inhalable formulation which is composed of porous microspheres prepared from poly(lactic-co-glycolic acid) (PLGA), internally loaded with indocyanine green (ICG)-modified, heat-resistant phages that we screened for their high efficacy against MRSA. This formulation can deliver therapeutic doses of ICG-modified active phages to the deep lung tissue infection sites, avoiding rapid clearance by alveolar macrophages. Combined with the synergistic treatment of phage therapy and photothermal therapy, the formulation demonstrates potent bactericidal effects in acute MRSA pneumonia. With its long-term stability at room temperature and inhalable characteristics, this formulation has the potential to be a promising drug for the clinical treatment of MRSA pneumonia.
Assuntos
Staphylococcus aureus Resistente à Meticilina , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Animais , Camundongos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Microesferas , Terapia Fototérmica , Pneumonia Estafilocócica/terapia , Terapia por Fagos/métodos , Verde de Indocianina/química , Verde de Indocianina/farmacologia , Verde de Indocianina/uso terapêutico , Verde de Indocianina/administração & dosagem , Antibacterianos/química , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Administração por Inalação , Humanos , Bacteriófagos/químicaRESUMO
Assembly of the adenovirus capsid protein hexon depends on the assistance of the molecular chaperone L4-100K. However, the chaperone mechanisms remain unclear. In this study, we found that L4-100K was involved in the hexon translation process and could prevent hexon degradation by the proteasome in cotransfected human cells. Two nonadjacent domains, 84-133 and 656-697, at the N-terminal and C-terminal regions of human adenovirus type 5 L4-100K, respectively, were found to be crucial and cooperatively responsible for hexon trimer expression and assembly. These two chaperone-related domains were conserved in the sequence of L4-100K and in the function of hexon assembly across different adenovirus serotypes. Different degrees of cross-activity of hexon trimerization with different serotypes were detected in subgroups B, C, and D, which were proven to be controlled by the interaction between the C-terminal chaperone-related domain of L4-100K and hypervariable regions (HVR) of hexon. Additionally, HVR-chimeric hexon mutants were successfully assembled with the assistance of the 1-697 mutant. Structural analysis of 656-697 by nuclear magnetic resonance and structural prediction of L4-100K using Robetta showed that the two conserved domains are mainly composed of α-helices and are located on the surface of the highly folded core region. Our research provides a more complete understanding of hexon assembly and guidance for the development of hexon-chimeric adenovirus vectors that will be safer, smarter, and more efficient. IMPORTANCE Adenovirus vectors have been widely used in clinical trials of vaccines and gene therapy, although some deficiencies remain. Chimeric modification of the hexon was expected to improve the potency of preexisting immune evasion and targeting, but in many cases, viral packaging is prevented by the inability of the chimeric hexon to assemble correctly. So far, few studies have examined the mechanisms of hexon trimer assembly. Here, we show how the chaperone protein L4-100K contributes to the assembly of the adenovirus capsid protein hexon, and these data will provide a guide for novel adenovirus vector design and development, as we desired.
Assuntos
Adenovírus Humanos , Chaperonas Moleculares , Proteínas não Estruturais Virais , Humanos , Adenovírus Humanos/genética , Adenovírus Humanos/metabolismo , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismoRESUMO
OBJECTIVE: Bone metabolism can be influenced by a range of factors. We selected children with self-limited epilepsy with centrotemporal spikes (SeLECTS) and lifestyles similar to those of healthy children to control for the confounding factors that may influence bone metabolism. We aimed to identify the specific effects of epilepsy and/or anti-seizure medications (ASMs) on bone metabolism. METHODS: Patients with SeLECTS were divided into an untreated group and a monotherapy group, and the third group was a healthy control group. We determined the levels of various biochemical markers of bone metabolism, including procollagen type I nitrogenous propeptide (PINP), alkaline phosphatase (ALP), osteocalcin (OC), collagen type I cross-linked C-telopeptide (CTX), calcium, magnesium, phosphorus, parathyroid hormone (PTH), and vitamin D3 (VD3 ). RESULTS: A total of 1487 patients (from 19 centers) were diagnosed with SeLECTS; 1032 were analyzed, including 117 patients who did not receive any ASMs (untreated group), 643 patients who received only one ASM (monotherapy group), and 272 children in the healthy control group. Except for VD3 , other bone metabolism of the three groups were different (p < .001). Bone metabolism was significantly lower in the untreated group than the healthy control group (p < .05). There were significant differences between the monotherapy and healthy control group in the level of many markers. However, when comparing the monotherapy and untreated groups, the results were different; oxcarbazepine, levetiracetam, and topiramate had no significant effect on bone metabolism. Phosphorus and magnesium were significantly lower in the valproic acid group than the untreated group (adjusted p < .05, Cliff's delta .282-.768). CTX was significantly higher in the lamotrigine group than in the untreated group (adjusted p = .012, Cliff's delta = .316). SIGNIFICANCE: Epilepsy can affect many aspects of bone metabolism. After controlling epilepsy and other confounders that affect bone metabolism, we found that the effects of ASMs on bone metabolism differed. Oxcarbazepine, levetiracetam, and topiramate did not affect bone metabolism, and lamotrigine corrected some of the abnormal markers of bone metabolism in patients with epilepsy.
RESUMO
Sodium-ion batteries (SIBs) are considered as a promising large-scale energy storage system owing to the abundant and low-cost sodium resources. However, their practical application still needs to overcome some problems like slow redox kinetics and poor capacity retention rate. Here, a high-performance ZnSe/carbon fibers (ZnSe-CFs) anode is demonstrated with high electrons/Na+ transport efficiency for sodium-ion half/full batteries by engineering ZnSe/C heterostructure. The electrochemical behavior of the ZnSe-CFs heterostructure anode is deeply studied via in situ characterizations and theoretical calculations. Phase conversion is revealed to accelerate the "Zn-escape" effect for the formation of robust solid electrolyte interphase (SEI). This leads to the ZnSe-CFs delivering a superior rate performance of 206 mAh g-1 at 1500 mA g-1 for half battery and an initial discharge capacity of 197.4 mAh g-1 at a current density of 1 A g-1 for full battery. The work here heralds a promising strategy to synthesize advanced heterostructured anodes for SIBs, and provides the guidance for a better understanding of phase conversion anodes.
RESUMO
BACKGROUND: The diagnostic criteria for Parkinson's disease (PD) remain complex, which is especially problematic for nonmovement disorder experts. A test is required to establish a diagnosis of PD with improved accuracy and reproducibility. OBJECTIVE: The study aimed to investigate the sensitivity and specificity of tests using sniffer dogs to diagnose PD. METHODS: A prospective, diagnostic case-control study was conducted in four tertiary medical centers in China to evaluate the accuracy of sniffer dogs to distinguish between 109 clinically established medicated patients with PD, 654 subjects without PD, 37 drug-naïve patients with PD, and 185 non-PD controls. The primary outcomes were sensitivity and specificity of sniffer dog's identification. RESULTS: In the study with patients who were medicated, when two or all three sniffer dogs yielded positive detection results in a sample tested, the index test sensitivity, specificity, and positive and negative likelihood ratios were 91% (95% CI: 84%-96%), 95% (95% CI: 93%-97%), and 19.16 (95% CI: 13.52-27.16) and 0.10 (95% CI: 0.05-0.17), respectively. The corresponding sensitivity, specificity, and positive and negative likelihood ratios in patients who were drug-naïve were 89% (95% CI: 75%-96%), 86% (95% CI: 81%-91%), and 6.6 (95% CI: 4.51-9.66) and 0.13 (95% CI: 0.05-0.32), respectively. CONCLUSIONS: Tests using sniffer dogs may be a useful, noninvasive, fast, and cost-effective method to identify patients with PD in community screening and health prevention checkups as well as in neurological practice. © 2022 International Parkinson and Movement Disorder Society.
Assuntos
Doença de Parkinson , Animais , Estudos de Casos e Controles , Cães , Humanos , Doença de Parkinson/diagnóstico , Estudos Prospectivos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Cães TrabalhadoresRESUMO
Mass spectrometry measurements coupled with classical molecular dynamics (MD) simulations have been conducted in recent years to understand the final stage of ion formation in electrospray ionization (ESI). Here, to characterize the ion formation mechanism in the recently developed droplet-assisted ionization (DAI) source, MD simulations with various conditions (solute number, temperature, ions, composition) were performed to help explain DAI-based measurements. The specific binding ability of cortisone with preformed ions (ions of sodium, cesium and iodide) in evaporating nanodroplets makes the ion formation process characteristic of both the ion evaporation and charge residue models (IEM and CRM, respectively). Most preformed ions are ejected with dozens of solvent molecules to form gas-phase ions by IEM, while clusters of one or more cortisone molecules with one or more preformed ions remain in the evaporating droplet to form gas-phase ions by CRM. As the ratio of cortisone molecules to preformed ions increases, the number of preformed ions held in the droplet without ejection by the IEM increases. In other words, increasing the molecular solute to preformed ion ratio in the droplet increases the fraction of gas-phase ions formed by CRM relative to IEM. The increase in CRM relative to IEM is accompanied by an increase in the calculated activation energy barrier, which can explain the activation energy measurements by DAI, where droplets without preformed ions exhibit higher activation energies for gas-phase ion formation than droplets containing large numbers of preformed ions.
Assuntos
Cortisona , Espectrometria de Massas por Ionização por Electrospray/métodos , Simulação de Dinâmica Molecular , Íons , Solventes/química , SoluçõesRESUMO
An efficient strategy for simultaneously detecting and removing Hg2+ from water is vital to address mercury pollution. Herein a supramolecular assembly GâH with photoluminescent properties is facilely constructed through the self-assembly of a functional pillar[5]arene bearing two N,N-dimethyldithiocarbamoyl binding sites (H) and an AIE-active tetraphenylethene derivative (G). Remarkably, the fluorescence of GâH can be exclusively quenched by Hg2+ among the 30 cations due to the formation of non-luminous ground state complex and only L-cysteine can restore fluorescence in the common 20 amino acids. Meanwhile, the probe GâH has a considerable thermal and pH stability, a good anti-interference property from various cations, and a satisfactory sensitivity. More importantly, GâH exhibits a prominent capability of Hg2+ removal with rapid capture rate (within 1â h) and excellent adsorption efficiency (98 %), as well as a highly efficient recyclability without losing any adsorption activity.
Assuntos
Mercúrio , Adsorção , Cisteína , Espectrometria de Fluorescência , ÁguaRESUMO
Essential tremor is one of the most common movement disorders. Despite its high prevalence and heritability, the genetic aetiology of essential tremor remains elusive. Up to now, only a few genes/loci have been identified, but these genes have not been replicated in other essential tremor families or cohorts. Here we report a genetic study in a cohort of 197 Chinese pedigrees clinically diagnosed with essential tremor. Using a comprehensive strategy combining linkage analysis, whole-exome sequencing, long-read whole-genome sequencing, repeat-primed polymerase chain reaction and GC-rich polymerase chain reaction, we identified an abnormal GGC repeat expansion in the 5' region of the NOTCH2NLC gene that co-segregated with disease in 11 essential tremor families (5.58%) from our cohort. Clinically, probands that had an abnormal GGC repeat expansion were found to have more severe tremor phenotypes, lower activities of daily living ability. Obvious genetic anticipation was also detected in these 11 essential tremor-positive families. These results indicate that abnormal GGC repeat expansion in the 5' region of NOTCH2NLC gene is associated with essential tremor, and provide strong evidence that essential tremor is a family of diseases with high clinical and genetic heterogeneities.
Assuntos
Povo Asiático/genética , Tremor Essencial/genética , Expansão das Repetições de Trinucleotídeos/genética , Adulto , Idoso , Feminino , Sequência Rica em GC , Ligação Genética , Humanos , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/ultraestrutura , Masculino , Microscopia Eletrônica , Pessoa de Meia-Idade , Doenças Neurodegenerativas/genética , Linhagem , Reação em Cadeia da Polimerase , Pele/ultraestrutura , Sequenciamento do Exoma , Sequenciamento Completo do GenomaRESUMO
Coronavirus disease 2019 (COVID-19) is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and is an emerging disease. There has been a rapid increase in cases and deaths since it was identified in Wuhan, China, in early December 2019, with over 4,000,000 cases of COVID-19 including at least 250,000 deaths worldwide as of May 2020. However, limited data about the clinical characteristics of pregnant women with COVID-19 have been reported. Given the maternal physiologic and immune function changes during pregnancy, pregnant women may be at a higher risk of being infected with SARS-CoV-2 and developing more complicated clinical events. Information on severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) may provide insights into the effects of COVID-19's during pregnancy. Even though SARS and MERS have been associated with miscarriage, intrauterine death, fetal growth restriction and high case fatality rates, the clinical course of COVID-19 pneumonia in pregnant women has been reported to be similar to that in non-pregnant women. In addition, pregnant women do not appear to be at a higher risk of catching COVID-19 or suffering from more severe disease than other adults of similar age. Moreover, there is currently no evidence that the virus can be transmitted to the fetus during pregnancy or during childbirth. Babies and young children are also known to only experience mild forms of COVID-19. The aims of this systematic review were to summarize the possible symptoms, treatments, and pregnancy outcomes of women infected with COVID-19 during pregnancy.
Assuntos
COVID-19/epidemiologia , Transmissão Vertical de Doenças Infecciosas , Complicações Infecciosas na Gravidez/epidemiologia , Resultado da Gravidez , SARS-CoV-2/imunologia , Adulto , COVID-19/imunologia , COVID-19/terapia , COVID-19/transmissão , Feminino , Humanos , Recém-Nascido , Exposição Materna , Coronavírus da Síndrome Respiratória do Oriente Médio/imunologia , Gravidez , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/terapia , Complicações Infecciosas na Gravidez/virologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/imunologia , SARS-CoV-2/isolamento & purificação , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/imunologia , Síndrome Respiratória Aguda Grave/virologia , Índice de Gravidade de DoençaRESUMO
BACKGROUND: Paroxysmal kinesigenic dyskinesia is a spectrum of involuntary dyskinetic disorders with high clinical and genetic heterogeneity. Mutations in proline-rich transmembrane protein 2 have been identified as the major pathogenic factor. OBJECTIVES: We analyzed 600 paroxysmal kinesigenic dyskinesia patients nationwide who were identified by the China Paroxysmal Dyskinesia Collaborative Group to summarize the clinical phenotypes and genetic features of paroxysmal kinesigenic dyskinesia in China and to provide new thoughts on diagnosis and therapy. METHODS: The China Paroxysmal Dyskinesia Collaborative Group was composed of departments of neurology from 22 hospitals. Clinical manifestations and proline-rich transmembrane protein 2 screening results were recorded using unified paroxysmal kinesigenic dyskinesia registration forms. Genotype-phenotype correlation analyses were conducted in patients with and without proline-rich transmembrane protein 2 mutations. High-knee exercises were applied in partial patients as a new diagnostic test to induce attacks. RESULTS: Kinesigenic triggers, male predilection, dystonic attacks, aura, complicated forms of paroxysmal kinesigenic dyskinesia, clustering in patients with family history, and dramatic responses to antiepileptic treatment were the prominent features in this multicenter study. Clinical analysis showed that proline-rich transmembrane protein 2 mutation carriers were prone to present at a younger age and have longer attack duration, bilateral limb involvement, choreic attacks, a complicated form of paroxysmal kinesigenic dyskinesia, family history, and more forms of dyskinesia. The new high-knee-exercise test efficiently induced attacks and could assist in diagnosis. CONCLUSIONS: We propose recommendations regarding diagnostic criteria for paroxysmal kinesigenic dyskinesia based on this large clinical study of paroxysmal kinesigenic dyskinesia. The findings offered some new insights into the diagnosis and treatment of paroxysmal kinesigenic dyskinesia and might help in building standardized paroxysmal kinesigenic dyskinesia clinical evaluations and therapies. © 2020 International Parkinson and Movement Disorder Society.
Assuntos
Distonia , China , Distonia/genética , Humanos , Masculino , Mutação/genética , Proteínas do Tecido Nervoso/genética , FenótipoRESUMO
In this study we identified Pdc2, the fission yeast ortholog of human Pat1b protein, which forms a complex with Lsm1-7 and plays a role in coupling deadenylation and decapping. The involvement of Pdc2 in RNA degradation and P-body function was also determined. We found that Pdc2 interacts with Dcp2 and is required for decapping in vivo. Although not absolutely essential for P-body assembly, overexpression of Pdc2 enhanced P-body formation even in the absence of Pdc1, the fission yeast functional homolog of human Edc4 protein, indicating that Pdc2 also plays a role in P-body formation. Intriguingly, in the absence of Pdc2, Lsm1 was found to accumulate in the nucleus, suggesting that Pdc2 shuttling between nucleus and cytoplasm plays a role in decreasing the nuclear concentration of Lsm1 to increase Lsm1 in the cytoplasm. Furthermore, unlike other components of P-bodies, the deadenylase Ccr4 did not accumulate in P-bodies in cells growing under favorable conditions and was only recruited to P-bodies after deprivation of glucose in a Pdc2-Lsm1-dependent manner, indicating a function of Pdc2 in cellular response to environmental stress. In supporting this idea, pdc2 mutants are defective in recovery from glucose starvation with a much longer time to re-enter the cell cycle. In keeping with the notion that Pat1 is a nucleocytoplasmic protein, functioning also in the nucleus, we found that Pdc2 physically and genetically interacts with the nuclear 5'-3' exonuclease Dhp1. A function of Pdc2-Lsm1, in concert with Dhp1, regulating RNA by promoting its decapping/destruction in the nucleus was suggested.
Assuntos
Exorribonucleases/genética , Regulação Fúngica da Expressão Gênica , Piruvato Descarboxilase/genética , Estabilidade de RNA , RNA Fúngico/genética , Proteínas de Schizosaccharomyces pombe/genética , Schizosaccharomyces/genética , Fatores de Transcrição/genética , Transporte Ativo do Núcleo Celular , Sequência de Bases , Ciclo Celular/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Exorribonucleases/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Glucose/deficiência , Glucose/farmacologia , Humanos , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Piruvato Descarboxilase/metabolismo , Proteínas de Ligação ao Cap de RNA/genética , Proteínas de Ligação ao Cap de RNA/metabolismo , RNA Fúngico/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Schizosaccharomyces/efeitos dos fármacos , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Radiation is a widely used therapeutic method for treating breast cancer. N-dihydrogalactochitosan (GC), a biocompatible immunostimulant, is known to enhance the effects of various treatment modalities in different tumor types. However, whether GC can enhance the radiosensitivity of cancer cells remains to be explored. In this study, triple-negative murine 4T1 breast cancer cells transduced with multi-reporter genes were implanted in immunocompetent Balb/C mice to track, dissect, and identify liver-metastatic 4T1 cells. These cells expressed cancer stem cell (CSC) -related characteristics, including the ability to form spheroids, the expression of the CD44 marker, and the increase of protein stability. We then ex vivo investigated the potential effect of GC on the radiosensitivity of the liver-metastatic 4T1 breast cancer cells and compared the results to those of parental 4T1 cells subjected to the same treatment. The cells were irradiated with increased doses of X-rays with or without GC treatment. Colony formation assays were then performed to determine the survival fractions and radiosensitivity of these cells. We found that GC preferably increased the radiosensitivity of liver-metastatic 4T1 breast cancer cells rather than that of the parental cells. Additionally, the single-cell DNA electrophoresis assay (SCDEA) and γ-H2AX foci assay were performed to assess the level of double-stranded DNA breaks (DSBs). Compared to the parental cells, DNA damage was significantly increased in liver-metastatic 4T1 cells after they were treated with GC plus radiation. Further studies on apoptosis showed that this combination treatment increased the sub-G1 population of cells, but not caspase-3 cleavage, in liver-metastatic breast cancer cells. Taken together, the current data suggest that the synergistic effects of GC and irradiation might be used to enhance the efficacy of radiotherapy in treating metastatic tumors.
Assuntos
Quitosana/farmacologia , Neoplasias Hepáticas/radioterapia , Neoplasias Hepáticas/secundário , Neoplasias Mamárias Animais/patologia , Tolerância a Radiação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Linhagem Celular Tumoral , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Rastreamento de Células , Dano ao DNA , Feminino , Histonas/metabolismo , Neoplasias Hepáticas/patologia , Camundongos Endogâmicos BALB C , Imagem Molecular , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos da radiação , Tolerância a Radiação/efeitos da radiação , Radiação Ionizante , Raios XRESUMO
The study was aimed to investigate the protective effect and pharmacodynamic difference of the ethanol extracts of Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus on the drug-induced liver injury induced by acetaminophen.The cell activations of LO2 cells treated by Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus ethanol extracts were tested by CCK-8 essay.The effects of ethanol extracts on cell survival rate,the activities of ALT and AST in culture medium were detected based on the injury model of LO2 cells induced by APAP.Further,in purpose to observe the protective effect of Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus ethanol extracts on a mouse model of liver injury induced by intraperitoneal injectionof acetaminophen was established.Mice were randomly divided into control group,model group,positive drug group and Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus ethanol extracts administration groups.The activities of ALT and AST in the serum and the levels of MDA,SOD,GSH and GSH-PX in the liver homogenate of the mice were detected by commercial kits.The HEstaining was used to observe the histopathological changes of liver tissue in each group and the TUNEL staining was used to observe the hepatocyte apoptosis.The results showed that the ethanol extracts at less than 1 g·L~(-1)did not affect the activity of LO2 cell.Compared with the model group,the cell survival rates of the Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus ethanol extract administration groups was significantly increased;the ALT and AST in the culture medium were distinct decreased(P<0.05 or P<0.01).The survival rate of Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus ethanol extract from different batches were similar,while that of the Schisandrea Sphenatherae Fructus ethanol extract from different batches were quite different(P<0.05or P<0.01).Further,animal experiments showed that Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus ethanol extract administration groups could markedly inhibit the increase of ALT and AST levels in serum(P<0.01),decrease MDA content significantly(P<0.01),and increase GSH,GSH-PX and SOD activity significantly(P<0.01).Among them,compared with other groups,Schisandrae Sphenantherae Fructus ethanol extract-2 group showed the best effect(P<0.05 or P<0.01)while Schisandrae Sphenantherae Fructus ethanol extract-1 showed a poor effect(P<0.05 or P<0.01).In conclusion,both Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus ethanol extracts have protective effect on APAP-induced drug-induced liver injury and there was a certain difference in the efficacy between Schisandrae Sphenantherae Fructus and Schisandrae Chinensis Fructus ethanol extracts from different habitats.
Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Medicamentos de Ervas Chinesas , Acetaminofen , Animais , Frutas , Fígado , CamundongosRESUMO
Four supramolecular assemblies are fabricated from two pillararene tetramers with aggregation-induced emission properties (SH and LH) and two different lengths of neutral guests with three binding sites (arms) for pillararene cavities (SG and LG) through host-guest interactions, and their fluorescent behaviors in organic solvent are investigated. SGâSH exhibits the largest fluorescent enhancement in chloroform due to supramolecular assembly-induced emission enhancement, while only LGâLH turns into supramolecular gel with stimuli responsiveness owing to their most flexible arms.
Assuntos
Géis/química , Clorofórmio/química , Corantes/química , Polímeros/química , Solventes/químicaRESUMO
Atmospheric aerosols have a tremendous influence on visibility, climate, and human health. New particle formation (NPF) is a crucial source of atmospheric aerosols. At present, certain field observations and experiments have discovered the presence of 3-hydroxy-4,4-dimethylglutaric acid (HDMGA), which may participate in NPF events. However, the nucleation mechanism of HDMGA has not been clearly understood. In addition, dimethylamine (DMA) is an important precursor of nucleation. The nucleation mechanism involving HDMGA and DMA has not been studied. In this study, the most stable structures of (HDMGA)(H2O)n (n = 0-3) and (HDMGA)(DMA)(H2O)n (n = 0-3) were obtained by using M06-2X coupled with the 6-311++G(3df,3pd) basis set. The α-carboxyl group is directly attached to the amino group in all the most stable configurations. Proton transfer enhances the strength of a hydrogen bond, as well as promotes the generation of a global minimum structure. Temperature has a considerable influence on the distribution of isomers for (HDMGA)(DMA)(H2O)3 as compared to the other investigated clusters. The Gibbs free energy values reveal that most of the clusters can exist in NPF, except for (HDMGA)(H2O)1. The process of adding a cluster of (H2O)n more likely occurs in the atmosphere than gradually adding a single water molecule.
RESUMO
Ammonia and amines are important common trace atmospheric species that can enhance new particle formation (NPF) in the Earth's atmosphere. However, the synergistic effect of these two bases involving nucleation is still lacking. We studied the most stable geometric structures and thermodynamics of quaternary (NH3)(CH3NH2)(H2SO4) m(H2O) n ( m = 1-3, n = 0-4) clusters at the PW91PW91/6-311++G(3df,3pd) level of theory for the first time. We find that the proton transfer from H2SO4 molecule to CH3NH2 molecule is easier than to NH3 molecule in the free or hydrated H2SO4-base clusters, and thus leads to the stability. The energetically favorable formation of the (NH3)(CH3NH2)(H2SO4) m(H2O) n ( n = 0-4) clusters, by hydration or attachment of base or substitution of ammonia by methylamine at 298.15 K, indicate that ammonia and methylamine together could enhance the stabilization of small binary clusters. At low RH and an ambient temperature of 298.15 K, the concentration of total hydrated (NH3)(CH3NH2)(H2SO4)2 clusters could reach that of total hydrated (NH3)(H2SO4)2 clusters, which is the most stable ammonia-containing cluster. These results indicate that the synergistic effect of NH3 and CH3NH2 might be important in forming the initial cluster with sulfuric acid and subsequently growth process. In addition, the evaporation rates of (NH3)(CH3NH2)(H2SO4)(H2O), (NH3)(CH3NH2)(H2SO4)2 and (NH3)(CH3NH2)(H2SO4)3 clusters, three relative abundant clusters in (NH3)(CH3NH2)(H2SO4) m(H2O) n system, were calculated. We find the stability increases with the increasing number of H2SO4 molecules.
RESUMO
In this work, a novel version of macrocyclic arenes, namely leaning pillar[6]arenes, was discovered and it can be considered as a tilted version of a pillar[6]arene with two hydroxy/alkoxy functionalities removed. Through a facile two-step synthetic approaches, in conjunction with a diversity of post-modification possibilities, a series of leaning pillar[6]arenes, with good cavity adaptability and enhanced guest-binding capability, was synthesized, and their self-assembly in single-crystal states is presented. DFT calculations demonstrated that the lower rotational barrier of unsubstituted phenylene rings, the uneven electron density centered at the leaning phenyl rings, and the polarization effect along the edge generated by the hydrogen-bond-induced orientation of hydroxy groups greatly affected the host-guest properties, and meanwhile provided an intuitive explanation for the pillar-like and rigid structure of traditional pillar[6]arenes. Significantly, the crystal structure of cyclo-oligomeric quinone was obtained by direct oxidation of leaning pillar[6]arenes.
RESUMO
BACKGROUND: Despite the impact of medication literacy (ML) on patients' safe use of medications, existing instruments are mostly for general health literacy measurement or designed for specific disease populations, with few specifically designed for ML. OBJECTIVE: To develop and validate the first Chinese medication literacy measure (ChMLM). METHODS: The ChMLM was developed by a multidisciplinary and bilingual expert panel and subsequently pilot-tested. The final version had 17 questions in four sections: vocabulary, non-prescription drug, prescription drug and drug advertisement. Face-to-face interviews were administered in a convenience sample of adults with diverse sociodemographic characteristics. Internal consistency was assessed by Cronbach's alpha. Content validity was confirmed by the expert panel, and hypothesis testing was performed to assess construct validity. RESULTS: A total of 634 adults were interviewed. The mean (SD) total ChMLM score was 13.0 (2.8). The internal validity was acceptable (Cronbach's alpha=0.72). Nine of the ten a priori hypotheses were fulfilled. Younger age, higher income and higher education levels were significantly associated with a higher ChMLM score. Furthermore, higher scores on the ChMLM were associated with higher confidence or less difficulty in writing, reading, speaking and listening abilities in a health-care encounter. No association was found between ChMLM total scores and frequency of doctor's visits. CONCLUSION: The ChMLM is a valid and reliable ML measure. It may help pharmacists and other health-care providers to target patients and problem areas that need interventions with the ultimate goal of preventing medication errors and harm.