Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(5): 2765-2772, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36626166

RESUMO

The catalytic asymmetric cyclopropanation reaction of alkenes with diazo compounds is a direct and powerful method to construct chiral cyclopropanes that are essential to drug discovery. However, diazo compounds are potentially explosive and often require hazardous reagents for their preparation. Here, we report on the use of 1,2-dicarbonyl compounds as safe and readily available surrogates for diazo compounds in the direct catalytic asymmetric deoxygenative cyclopropanation reaction. Enabled by a class of simple and readily accessible chiral salen-Mo catalysts, the reaction proceeded with generally good enantioselectivities and yields toward a wide range of substrates (80 examples). Preliminary mechanistic studies suggested that the proposed µ-oxo bridged dinuclear Mo(III)-species was the catalytically active species. This strategy not only provides a promising route for the synthesis of chiral cyclopropanes but also opens a new window for the potential applications of chiral salen-Mo complexes in asymmetric catalysis.

2.
Angew Chem Int Ed Engl ; 60(28): 15254-15259, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-33901340

RESUMO

The transition-metal-catalyzed cyclopropanation of alkenes by the decomposition of diazo compounds is a powerful and straightforward strategy to produce cyclopropanes, but is tempered by the potentially explosive nature of diazo substrates. Herein we report the Mo-catalyzed regiospecific deoxygenative cyclopropanation of readily available and bench-stable 1,2-dicarbonyl compounds, in which one of the two carbonyl groups acts as a carbene equivalent upon deoxygenation and engages in the subsequent cyclopropanation process. The use of a commercially available Mo catalyst afforded an array of valuable cyclopropanes with exclusive regioselectivity in up to 90 % yield. The synthetic utility of this method was further demonstrated by gram-scale syntheses, late-stage functionalization, and the cyclopropanation of a simple monocarbonyl compound. Preliminary mechanistic studies suggest that phosphine (or silane) acts as both a mild reductant and a good oxygen acceptor that efficiently regenerates the catalytically active Mo catalyst through reduction of the Mo-oxo complexes.

3.
Nat Commun ; 13(1): 1778, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35365669

RESUMO

The radical cascade reaction is considered as one of the most powerful methods to build molecular complexity. However, highly stereoselective intermolecular radical cascade reactions that can produce complex cyclic compounds bearing multiple stereocenters via visible-light-induced photocatalysis have been challenging yet desirable. Herein we report a facile and efficient synthesis of multi-substituted trans-fused hexahydrocarbazoles via a stereoselective intermolecular radical cascade reaction of readily available tryptophans and acrylamides enabled by visible-light-induced photoredox catalysis. The trans-fused hexahydrocarbazoles with up to five stereocenters including two quaternary ones can be accessed in up to 82% yield, >20/1 diastereoselectivity, and 96% ee. Interestingly, the tetrahydrocarbazoles are favorably formed when the reaction is performed under air. Moreover, by simply switching the starting material from tryptophans to ɤ-alkenyl substituted α-amino acids, this protocol can be further applied to the stereoselective syntheses of 1,3,5-trisubstituted cyclohexanes which are otherwise challenging to access. Preliminary mechanistic studies suggest that the reaction goes through radical addition cascade and radical-polar crossover processes.


Assuntos
Acrilamidas , Triptofano , Aminoácidos , Catálise , Oxirredução
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa