Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Cell ; 184(22): 5527-5540.e18, 2021 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-34644527

RESUMO

To secure phosphorus (P) from soil, most land plants use a direct phosphate uptake pathway via root hairs and epidermis and an indirect phosphate uptake pathway via mycorrhizal symbiosis. The interaction between these two pathways is unclear. Here, we mapped a network between transcription factors and mycorrhizal symbiosis-related genes using Y1H. Intriguingly, this gene regulatory network is governed by the conserved P-sensing pathway, centered on phosphate starvation response (PHR) transcription factors. PHRs are required for mycorrhizal symbiosis and regulate symbiosis-related genes via the P1BS motif. SPX-domain proteins suppress OsPHR2-mediated induction of symbiosis-related genes and inhibit mycorrhizal infection. In contrast, plants overexpressing OsPHR2 show improved mycorrhizal infection and are partially resistant to P-mediated inhibition of symbiosis. Functional analyses of network nodes revealed co-regulation of hormonal signaling and mycorrhizal symbiosis. This network deciphers extensive regulation of mycorrhizal symbiosis by endogenous and exogenous signals and highlights co-option of the P-sensing pathway for mycorrhizal symbiosis.


Assuntos
Redes Reguladoras de Genes , Micorrizas/genética , Micorrizas/fisiologia , Fosfatos/deficiência , Simbiose/genética , Simbiose/fisiologia , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/genética , Oryza/microbiologia , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido
2.
Cell ; 184(21): 5391-5404.e17, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34597584

RESUMO

Plant immunity is activated upon pathogen perception and often affects growth and yield when it is constitutively active. How plants fine-tune immune homeostasis in their natural habitats remains elusive. Here, we discover a conserved immune suppression network in cereals that orchestrates immune homeostasis, centering on a Ca2+-sensor, RESISTANCE OF RICE TO DISEASES1 (ROD1). ROD1 promotes reactive oxygen species (ROS) scavenging by stimulating catalase activity, and its protein stability is regulated by ubiquitination. ROD1 disruption confers resistance to multiple pathogens, whereas a natural ROD1 allele prevalent in indica rice with agroecology-specific distribution enhances resistance without yield penalty. The fungal effector AvrPiz-t structurally mimics ROD1 and activates the same ROS-scavenging cascade to suppress host immunity and promote virulence. We thus reveal a molecular framework adopted by both host and pathogen that integrates Ca2+ sensing and ROS homeostasis to suppress plant immunity, suggesting a principle for breeding disease-resistant, high-yield crops.


Assuntos
Cálcio/metabolismo , Sequestradores de Radicais Livres/metabolismo , Proteínas Fúngicas/metabolismo , Oryza/imunologia , Imunidade Vegetal , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sistemas CRISPR-Cas/genética , Membrana Celular/metabolismo , Resistência à Doença/genética , Modelos Biológicos , Oryza/genética , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Ligação Proteica , Estabilidade Proteica , Reprodução , Especificidade da Espécie , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Zea mays/imunologia
3.
Nature ; 629(8014): 1158-1164, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38750355

RESUMO

Plant pattern-recognition receptors perceive microorganism-associated molecular patterns to activate immune signalling1,2. Activation of the pattern-recognition receptor kinase CERK1 is essential for immunity, but tight inhibition of receptor kinases in the absence of pathogen is crucial to prevent autoimmunity3,4. Here we find that the U-box ubiquitin E3 ligase OsCIE1 acts as a molecular brake to inhibit OsCERK1 in rice. During homeostasis, OsCIE1 ubiquitinates OsCERK1, reducing its kinase activity. In the presence of the microorganism-associated molecular pattern chitin, active OsCERK1 phosphorylates OsCIE1 and blocks its E3 ligase activity, thus releasing the brake and promoting immunity. Phosphorylation of a serine within the U-box of OsCIE1 prevents its interaction with E2 ubiquitin-conjugating enzymes and serves as a phosphorylation switch. This phosphorylation site is conserved in E3 ligases from plants to animals. Our work identifies a ligand-released brake that enables dynamic immune regulation.


Assuntos
Oryza , Imunidade Vegetal , Proteínas de Plantas , Ubiquitina , Animais , Quitina/metabolismo , Homeostase , Ligantes , Oryza/enzimologia , Oryza/imunologia , Oryza/metabolismo , Oryza/microbiologia , Fosforilação , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/imunologia , Proteínas de Plantas/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/antagonistas & inibidores , Ubiquitina-Proteína Ligases/química , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Fosfosserina/metabolismo , Sequência Conservada
4.
Nature ; 601(7892): 245-251, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34912119

RESUMO

Pattern-triggered immunity (PTI) and effector-triggered immunity (ETI) in plants enable them to respond to pathogens by activating the production of defence metabolites that orchestrate immune responses1-4. How the production of defence metabolites is promoted by immune receptors and coordinated with broad-spectrum resistance remains elusive. Here we identify the deubiquitinase PICI1 as an immunity hub for PTI and ETI in rice (Oryza sativa). PICI1 deubiquitinates and stabilizes methionine synthetases to activate methionine-mediated immunity principally through biosynthesis of the phytohormone ethylene. PICI1 is targeted for degradation by blast fungal effectors, including AvrPi9, to dampen PTI. Nucleotide-binding domain, leucine-rich-repeat-containing receptors (NLRs) in the plant immune system, such as PigmR, protect PICI1 from effector-mediated degradation to reboot the methionine-ethylene cascade. Natural variation in the PICI1 gene contributes to divergence in basal blast resistance between the rice subspecies indica and japonica. Thus, NLRs govern an arms race with effectors, using a competitive mode that hinges on a critical defence metabolic pathway to synchronize PTI with ETI and ensure broad-spectrum resistance.


Assuntos
Oryza , Doenças das Plantas , Metionina , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Plantas , Transdução de Sinais/genética
5.
Nature ; 589(7843): 586-590, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33299183

RESUMO

Legumes, unlike other plants, have the ability to establish symbiosis with nitrogen-fixing rhizobia. It has been theorized that a unique property of legume root cortical cells enabled the initial establishment of rhizobial symbiosis1-3. Here we show that a SHORTROOT-SCARECROW (SHR-SCR) stem cell program in cortical cells of the legume Medicago truncatula specifies their distinct fate. Regulatory elements drive the cortical expression of SCR, and stele-expressed SHR protein accumulates in cortical cells of M. truncatula but not Arabidopsis thaliana. The cortical SHR-SCR network is conserved across legume species, responds to rhizobial signals, and initiates legume-specific cortical cell division for de novo nodule organogenesis and accommodation of rhizobia. Ectopic activation of SHR and SCR in legumes is sufficient to induce root cortical cell division. Our work suggests that acquisition of the cortical SHR-SCR module enabled cell division coupled to rhizobial infection in legumes. We propose that this event was central to the evolution of rhizobial endosymbiosis.


Assuntos
Diferenciação Celular , Linhagem da Célula , Medicago truncatula/citologia , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Nodulação , Arabidopsis/citologia , Arabidopsis/metabolismo , Divisão Celular , Citocininas/metabolismo , Evolução Molecular , Medicago truncatula/embriologia , Proteínas de Plantas/genética , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Rhizobium/metabolismo , Transdução de Sinais , Simbiose/genética
6.
Plant Cell ; 35(6): 2006-2026, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36808553

RESUMO

Arbuscular mycorrhizal (AM) symbiosis is a widespread, ancient mutualistic association between plants and fungi, and facilitates nutrient uptake into plants. Cell surface receptor-like kinases (RLKs) and receptor-like cytoplasmic kinases (RLCKs) play pivotal roles in transmembrane signaling, while few RLCKs are known to function in AM symbiosis. Here, we show that 27 out of 40 AM-induced kinases (AMKs) are transcriptionally upregulated by key AM transcription factors in Lotus japonicus. Nine AMKs are only conserved in AM-host lineages, among which the SPARK-RLK-encoding gene KINASE3 (KIN3) and the RLCK paralogues AMK8 and AMK24 are required for AM symbiosis. KIN3 expression is directly regulated by the AP2 transcription factor CTTC MOTIF-BINDING TRANSCRIPTION FACTOR1 (CBX1), which regulates the reciprocal exchange of nutrients in AM symbiosis, via the AW-box motif in the KIN3 promoter. Loss of function mutations in KIN3, AMK8, or AMK24 result in reduced mycorrhizal colonization in L. japonicus. AMK8 and AMK24 physically interact with KIN3. KIN3 and AMK24 are active kinases and AMK24 directly phosphorylates KIN3 in vitro. Moreover, CRISPR-Cas9-mediated mutagenesis of OsRLCK171, the sole homolog of AMK8 and AMK24 in rice (Oryza sativa), leads to diminished mycorrhization with stunted arbuscules. Overall, our results reveal a crucial role of the CBX1-driven RLK/RLCK complex in the evolutionarily conserved signaling pathway enabling arbuscule formation.


Assuntos
Lotus , Micorrizas , Oryza , Humanos , Lotus/genética , Simbiose/genética , Transporte Biológico , Pesquisadores , Proteínas de Plantas/genética , Raízes de Plantas , Regulação da Expressão Gênica de Plantas/genética
7.
Plant Cell ; 35(1): 24-66, 2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36222573

RESUMO

Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.


Assuntos
Mudança Climática , Ecossistema , Humanos , Produtos Agrícolas , Carbono , Secas
8.
Nature ; 580(7805): 653-657, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32350464

RESUMO

The aboveground parts of terrestrial plants, collectively called the phyllosphere, have a key role in the global balance of atmospheric carbon dioxide and oxygen. The phyllosphere represents one of the most abundant habitats for microbiota colonization. Whether and how plants control phyllosphere microbiota to ensure plant health is not well understood. Here we show that the Arabidopsis quadruple mutant (min7 fls2 efr cerk1; hereafter, mfec)1, simultaneously defective in pattern-triggered immunity and the MIN7 vesicle-trafficking pathway, or a constitutively activated cell death1 (cad1) mutant, carrying a S205F mutation in a membrane-attack-complex/perforin (MACPF)-domain protein, harbour altered endophytic phyllosphere microbiota and display leaf-tissue damage associated with dysbiosis. The Shannon diversity index and the relative abundance of Firmicutes were markedly reduced, whereas Proteobacteria were enriched in the mfec and cad1S205F mutants, bearing cross-kingdom resemblance to some aspects of the dysbiosis that occurs in human inflammatory bowel disease. Bacterial community transplantation experiments demonstrated a causal role of a properly assembled leaf bacterial community in phyllosphere health. Pattern-triggered immune signalling, MIN7 and CAD1 are found in major land plant lineages and are probably key components of a genetic network through which terrestrial plants control the level and nurture the diversity of endophytic phyllosphere microbiota for survival and health in a microorganism-rich environment.


Assuntos
Arabidopsis/genética , Arabidopsis/microbiologia , Redes Reguladoras de Genes/genética , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/prevenção & controle , Arabidopsis/imunologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Morte Celular , Meio Ambiente , Firmicutes/genética , Firmicutes/isolamento & purificação , Genes de Plantas/genética , Genótipo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Homeostase , Microbiota/genética , Microbiota/fisiologia , Mutação , Fenótipo , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/microbiologia , Proteobactérias/genética , Proteobactérias/isolamento & purificação
9.
Plant Cell ; 34(5): 1573-1599, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35157080

RESUMO

Most land plants benefit from endosymbiotic interactions with mycorrhizal fungi, including legumes and some nonlegumes that also interact with endosymbiotic nitrogen (N)-fixing bacteria to form nodules. In addition to these helpful interactions, plants are continuously exposed to would-be pathogenic microbes: discriminating between friends and foes is a major determinant of plant survival. Recent breakthroughs have revealed how some key signals from pathogens and symbionts are distinguished. Once this checkpoint has been passed and a compatible symbiont is recognized, the plant coordinates the sequential development of two types of specialized structures in the host. The first serves to mediate infection, and the second, which appears later, serves as sophisticated intracellular nutrient exchange interfaces. The overlap in both the signaling pathways and downstream infection components of these symbioses reflects their evolutionary relatedness and the common requirements of these two interactions. However, the different outputs of the symbioses, phosphate uptake versus N fixation, require fundamentally different components and physical environments and necessitated the recruitment of different master regulators, NODULE INCEPTION-LIKE PROTEINS, and PHOSPHATE STARVATION RESPONSES, for nodulation and mycorrhization, respectively.


Assuntos
Fabaceae , Micorrizas , Rhizobium , Micorrizas/fisiologia , Fixação de Nitrogênio , Fosfatos , Plantas/microbiologia , Rhizobium/fisiologia , Simbiose/fisiologia
10.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35022232

RESUMO

Nitrogen fixation in soybean takes place in root nodules that arise from de novo cell divisions in the root cortex. Although several early nodulin genes have been identified, the mechanism behind the stimulation of cortical cell division during nodulation has not been fully resolved. Here we provide evidence that two paralogs of soybean SHORT-ROOT (GmSHR) play vital roles in soybean nodulation. Expression of GmSHR4 and GmSHR5 (GmSHR4/5) is induced in cortical cells at the beginning of nodulation, when the first cell divisions occur. The expression level of GmSHR4/5 is positively associated with cortical cell division and nodulation. Knockdown of GmSHR5 inhibits cell division in outer cortical layers during nodulation. Knockdown of both paralogs disrupts the cell division throughout the cortex, resulting in poorly organized nodule primordia with delayed vascular tissue formation. GmSHR4/5 function by enhancing cytokinin signaling and activating early nodulin genes. Interestingly, D-type cyclins act downstream of GmSHR4/5, and GmSHR4/5 form a feedforward loop regulating D-type cyclins. Overexpression of D-type cyclins in soybean roots also enhanced nodulation. Collectively, we conclude that the GmSHR4/5-mediated pathway represents a vital module that triggers cytokinin signaling and activates D-type cyclins during nodulation in soybean.


Assuntos
Ciclinas/metabolismo , Glycine max/metabolismo , Glycine max/fisiologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Nodulação/fisiologia , Nódulos Radiculares de Plantas/fisiologia , Homologia de Sequência de Aminoácidos , Divisão Celular , Citocininas/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/genética , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33853950

RESUMO

Plants encounter various microbes in nature and must respond appropriately to symbiotic or pathogenic ones. In rice, the receptor-like kinase OsCERK1 is involved in recognizing both symbiotic and immune signals. However, how these opposing signals are discerned via OsCERK1 remains unknown. Here, we found that receptor competition enables the discrimination of symbiosis and immunity signals in rice. On the one hand, the symbiotic receptor OsMYR1 and its short-length chitooligosaccharide ligand inhibit complex formation between OsCERK1 and OsCEBiP and suppress OsCERK1 phosphorylating the downstream substrate OsGEF1, which reduces the sensitivity of rice to microbe-associated molecular patterns. Indeed, OsMYR1 overexpression lines are more susceptible to the fungal pathogen Magnaporthe oryzae, whereas Osmyr1 mutants show higher resistance. On the other hand, OsCEBiP can bind OsCERK1 and thus block OsMYR1-OsCERK1 heteromer formation. Consistently, the Oscebip mutant displayed a higher rate of mycorrhizal colonization at early stages of infection. Our results indicate that OsMYR1 and OsCEBiP receptors compete for OsCERK1 to determine the outcome of symbiosis and immunity signals.


Assuntos
Oligossacarídeos/metabolismo , Oryza/metabolismo , Simbiose/imunologia , Adaptação Biológica/imunologia , Adaptação Biológica/fisiologia , Ascomicetos/metabolismo , Quitina/imunologia , Quitosana/imunologia , Regulação da Expressão Gênica de Plantas/genética , Micorrizas/metabolismo , Oligossacarídeos/genética , Oligossacarídeos/imunologia , Oryza/fisiologia , Fosforilação , Imunidade Vegetal/imunologia , Proteínas de Plantas/genética , Transdução de Sinais/genética , Simbiose/fisiologia
12.
New Phytol ; 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37715479

RESUMO

Nitrogen (N) and phosphorus (P) are the most important macronutrients required for plant growth and development. To cope with the limited and uneven distribution of N and P in complicated soil environments, plants have evolved intricate molecular strategies to improve nutrient acquisition that involve adaptive root development, production of root exudates, and the assistance of microbes. Recently, great advances have been made in understanding the regulation of N and P uptake and utilization and how plants balance the direct uptake of nutrients from the soil with the nutrient acquisition from beneficial microbes such as arbuscular mycorrhiza. Here, we summarize the major advances in these areas and highlight plant responses to changes in nutrient availability in the external environment through local and systemic signals.

13.
Mol Breed ; 43(6): 52, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37323469

RESUMO

Soybean (Glycine max) is one of the most important commercial crops worldwide. Soybean hosts diverse microbes, including pathogens that may cause diseases and symbionts that contribute to nitrogen fixation. Study on soybean-microbe interactions to understand pathogenesis, immunity, and symbiosis represents an important research direction toward plant protection in soybean. In terms of immune mechanisms, current research in soybean lags far behind that in the model plants Arabidopsis and rice. In this review, we summarized the shared and unique mechanisms involved in the two-tiered plant immunity and the virulence function of pathogen effectors between soybean and Arabidopsis, providing a molecular roadmap for future research on soybean immunity. We also discussed disease resistance engineering and future perspectives in soybean.

14.
Int J Mol Sci ; 24(5)2023 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-36902374

RESUMO

Obtaining homozygous lines from transgenic plants is an important step for phenotypic evaluations, but the selection of homozygous plants is time-consuming and laborious. The process would be significantly shortened if anther or microspore culture could be completed in one generation. In this study, we obtained 24 homozygous doubled haploid (DH) transgenic plants entirely by microspore culture from one T0 transgenic plant overexpressing the gene HvPR1 (pathogenesis-related-1). Nine of the doubled haploids grew to maturity and produced seeds. qRCR (quantitative real-time PCR) validation showed that the HvPR1 gene was expressed differentially even among different DH1 plants (T2) from the same DH0 line (T1). Phenotyping analysis suggested that the overexpression of HvPR1 inhibited nitrogen use efficiency (NUE) only under low nitrogen treatment. The established method of producing homozygous transgenic lines will enable the rapid evaluation of transgenic lines for gene function studies and trait evaluation. As an example, the HvPR1 overexpression of DH lines also could be used for further analysis of NUE-related research in barley.


Assuntos
Hordeum , Hordeum/genética , Haploidia , Homozigoto , Fenótipo
15.
Mol Plant Microbe Interact ; 35(3): 178-186, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34941378

RESUMO

Arbuscular mycorrhizal (AM) fungi form a mutual association with the majority of land plants, including most angiosperms of the dicotyledon and monocotyledon lineages. The symbiosis is based upon bidirectional nutrient exchange between the host and symbiont that occurs between inner cortical cells of the root and branched AM hyphae called arbuscules that develop within these cells. Lipid transport and its regulation during the symbiosis have been intensively investigated in dicotyledon plants, especially legumes. Here, we characterize OsRAM2 and OsRAM2L, homologs of Medicago truncatula RAM2, and found that plants defective in OsRAM2 were unable to be colonized by AM fungi and showed impaired colonization by Magnaporthe oryzae. The induction of OsRAM2 and OsRAM2L is dependent on OsRAM1 and the common symbiosis signaling pathway pathway genes CCaMK and CYCLOPS, while overexpression of OsRAM1 results in increased expression of OsRAM2 and OsRAM2L. Collectively, our data show that the function and regulation of OsRAM2 is conserved in monocot and dicot plants and reveals that, similar to mutualistic fungi, pathogenic fungi have recruited RAM2-mediated fatty acid biosynthesis to facilitate invasion.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Medicago truncatula , Micorrizas , Oryza , Ácidos Graxos/metabolismo , Regulação da Expressão Gênica de Plantas , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Oryza/genética , Raízes de Plantas/microbiologia , Simbiose/genética
16.
Plant Biotechnol J ; 20(11): 2159-2173, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35869670

RESUMO

Microbiota colonize every accessible plant tissue and play fundamental roles in plant growth and health. Soybean stay-green syndrome (SGS), a condition that causes delayed leaf senescence (stay-green), flat pods and abnormal seeds of soybean, has become the most serious disease of soybean in China. However, the direct cause of SGS is highly debated, and little is known about how SGS affect soybean microbiome dynamics, particularly the seed microbiome. We studied the bacterial, fungal, and viral communities associated with different soybean tissues with and without SGS using a multi-omics approach, and investigated the possible pathogenic agents associated with SGS and how SGS affects the assembly and functions of plant-associated microbiomes. We obtained a comprehensive view of the composition, function, loads, diversity, and dynamics of soybean microbiomes in the rhizosphere, root, stem, leaf, pod, and seed compartments, and discovered that soybean SGS was associated with dramatically increased microbial loads and dysbiosis of the bacterial microbiota in seeds. Furthermore, we identified a novel geminivirus that was strongly associated with soybean SGS, regardless of plant cultivar, sampling location, or harvest year. This whole-plant microbiome profiling of soybean provides the first demonstration of geminivirus infection associated with microbiota dysbiosis, which might represent a general microbiological symptom of plant diseases.


Assuntos
Geminiviridae , Microbiota , Glycine max/genética , Glycine max/microbiologia , Disbiose , Microbiota/genética , Rizosfera , Bactérias , Raízes de Plantas/microbiologia
17.
New Phytol ; 234(5): 1606-1613, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297054

RESUMO

CERK1 (Chitin Elicitor Receptor Kinase 1), a lysin motif-containing pattern recognition receptor (PRR), perceives chitooligosaccharides (COs) to mount immune and symbiotic responses. However, CERK1, for a relatively long time, has been regarded as a co-receptor in plant immunity, mainly due to its lack of high binding affinity to known elicitors. Recent studies demonstrated several novel carbohydrates as ligands of CERK1 in different plant species and recognized CERK1 as a key receptor in plant immunity and symbiosis. This review summarizes recent knowledge acquired on the role of CERK1 in plant-microbe interactions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Quitina/metabolismo , Imunidade Vegetal , Proteínas Serina-Treonina Quinases
18.
New Phytol ; 236(6): 2282-2293, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36254112

RESUMO

Most land plants associate with arbuscular mycorrhizal (AM) fungi to secure mineral nutrient acquisition, especially that of phosphorus. A phosphate starvation response (PHR)-centered network regulates AM symbiosis. Here, we identified 520 direct target genes for the rice transcription factor OsPHR1/2/3 during AM symbiosis using transcriptome deep sequencing and DNA affinity purification sequencing. These genes were involved in strigolactone biosynthesis, transcriptional reprogramming, and bidirectional nutrient exchange. Moreover, we identified the receptor-like kinase, Arbuscule Development Kinase 1 (OsADK1), as a new target of OsPHR1/2/3. Electrophoretic mobility shift assays and transactivation assays showed that OsPHR2 can bind directly to the P1BS elements within the OsADK1 promoter to activate its transcription. OsADK1 appeared to be required for mycorrhizal colonization and arbuscule development. In addition, hydroponic experiments suggested that OsADK1 may be involved in plant Pi starvation responses. Our findings validate a role for OsPHR1/2/3 as master regulators of mycorrhizal-related genes involved in various stages of symbiosis, and uncover a new RLK involved in AM symbiosis and plant Pi starvation responses.


Assuntos
Micorrizas , Micorrizas/fisiologia , Simbiose/fisiologia , Fosfatos/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
19.
New Phytol ; 233(6): 2629-2642, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34942018

RESUMO

Pollen protects male sperm and allows flowering plants to adapt to diverse terrestrial environments, thereby leading to the rapid expansion of plants into new regions. The process of anther/pollen development is coordinately regulated by internal and external factors including hormones. Currently, the molecular mechanisms underlying gibberellin (GA)-mediated male reproductive development in plants remain unknown. We show here that rice DELLA/SLR1, which encodes the central negative regulator of GA signaling, is essential for rice anther development. The slr1-5 mutant exhibits premature programmed cell death of the tapetum, lacks Ubisch bodies, and has no exine and no mature pollen. SLR1 is mainly expressed in tapetal cells and tetrads, and is required for the appropriate expression of genes encoding key factors of pollen development, which are suggested to be OsMS188-targeted genes. OsMS188 is the main component in the essential genetic program of tapetum and pollen development. Further, we demonstrate that SLR1 interacts with OsMS188 to cooperatively activate the expression of the sporopollenin biosynthesis and transport-related genes CYP703A3, DPW, ABCG15 and PKS1 for rapid formation of pollen walls. Overall, the results of this study suggest that the GA hormonal signal is integrated into the anther genetic program and regulates rice anther development through the GA-DELLA-OsMS188 module.


Assuntos
Oryza , Regulação da Expressão Gênica de Plantas , Mutação/genética , Oryza/metabolismo , Fenótipo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Pólen/metabolismo
20.
New Phytol ; 235(1): 276-291, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35118662

RESUMO

Sea buckthorn (Hippophae rhamnoides), a horticulturally multipurpose species in the family Elaeagnaceae, can build associations with Frankia actinomycetes to enable symbiotic nitrogen-fixing. Currently, no high-quality reference genome is available for an actinorhizal plant, which greatly hinders the study of actinorhizal symbiotic nodulation. Here, by combining short-read, long-read and Hi-C sequencing technologies, we generated a chromosome-level reference genome of H. rhamnoides (scaffold N50: 65 Mb, and genome size: 730 Mb) and predicted 30 812 protein-coding genes mainly on 12 pseudochromosomes. Hippophae rhamnoides was found to share a high proportion of symbiotic nodulation genes with Medicago truncatula, implying a shared molecular mechanism between actinorhizal and rhizobial symbioses. Phylogenetic analysis clustered the three paralogous NODULE INCEPTION (NIN) genes of H. rhamnoides with those of other nodulating species, forming the NIN group that most likely evolved from the ancestral NLP group. The genome of H. rhamnoides will help us to decipher the underlying genetic programming of actinorhizal symbiosis, and our high-quality genome and transcriptomic resources will make H. rhamnoides a new excellent model plant for actinorhizal symbiosis research.


Assuntos
Frankia , Hippophae , Rhizobium , Frankia/genética , Hippophae/genética , Filogenia , Plantas , Rhizobium/genética , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa