Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Metab Eng ; 85: 46-60, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39019249

RESUMO

Heme has attracted considerable attention due to its indispensable biological roles and applications in healthcare and artificial foods. The development and utilization of edible microorganisms instead of animals to produce heme is the most promising method to promote the large-scale industrial production and safe application of heme. However, the cytotoxicity of heme severely restricts its efficient synthesis by microorganisms, and the cytotoxic mechanism is not fully understood. In this study, the effect of heme toxicity on Saccharomyces cerevisiae was evaluated by enhancing its synthesis using metabolic engineering. The results showed that the accumulation of heme after the disruption of heme homeostasis caused serious impairments in cell growth and metabolism, as demonstrated by significantly poor growth, mitochondrial damage, cell deformations, and chapped cell surfaces, and these features which were further associated with substantially elevated reactive oxygen species (ROS) levels within the cell (mainly H2O2 and superoxide anion radicals). To improve cellular tolerance to heme, 5 rounds of laboratory evolution were performed, increasing heme production by 7.3-fold and 4.2-fold in terms of the titer (38.9 mg/L) and specific production capacity (1.4 mg/L/OD600), respectively. Based on comparative transcriptomic analyses, 32 genes were identified as candidates that can be modified to enhance heme production by more than 20% in S. cerevisiae. The combined overexpression of 5 genes (SPS22, REE1, PHO84, HEM4 and CLB2) was shown to be an optimal method to enhance heme production. Therefore, a strain with enhanced heme tolerance and ROS quenching ability (R5-M) was developed that could generate 380.5 mg/L heme with a productivity of 4.2 mg/L/h in fed-batch fermentation, with S. cerevisiae strains being the highest producers reported to date. These findings highlight the importance of improving heme tolerance for the microbial production of heme and provide a solution for efficient heme production by engineered yeasts.


Assuntos
Heme , Engenharia Metabólica , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Heme/metabolismo , Heme/biossíntese , Heme/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Espécies Reativas de Oxigênio/metabolismo
2.
Bioorg Chem ; 152: 107737, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39180862

RESUMO

Betulinic acid (BA) is a lupinane-type pentacyclic triterpenoid natural product derived from lupeol that has favorable anti-inflammatory and anti-tumor activities. Currently, BA is mainly produced via botanical extraction, which significantly limits its widespread use. In this study, we investigated the de novo synthesis of BA in Saccharomyces cerevisiae, and to facilitate the synthesis and storage of hydrophobic BA, we adopted a dual-engineering strategy involving peroxisomes and lipid droplets to construct the BA biosynthetic pathway. By expressing Betula platyphylla-derived lupeol C-28 oxidase (BPLO) and Arabidopsis-derived ATR1, we succeeded in developing a BA-producing strain and following multiple expression optimizations of the linker between BPLO and ATR1, the BA titer reached 77.53 mg/L in shake flasks and subsequently reached 205.74 mg/L via fed-batch fermentation in a 5-L bioreactor. In this study, we developed a feasible approach for the de novo synthesis of BA and its direct precursor lupeol in engineered S. cerevisiae.


Assuntos
Ácido Betulínico , Triterpenos Pentacíclicos , Saccharomyces cerevisiae , Triterpenos , Saccharomyces cerevisiae/metabolismo , Triterpenos Pentacíclicos/metabolismo , Triterpenos Pentacíclicos/química , Triterpenos/metabolismo , Triterpenos/química , Estrutura Molecular , Engenharia Metabólica
3.
Acta Pharmacol Sin ; 2024 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-39472494

RESUMO

Translational pharmacological research on traditional medicines lays the foundation for precisely understanding how the medicines function in the body to deliver therapeutic benefits. Borneolum syntheticum (Bingpian) is commonly used in Chinese herbal medicines for coronary heart disease, but its specific cardiovascular impact remains poorly understood. Isoborneol, a constituent of Bingpian, has been found to reduce lipid accumulation in macrophages in vitro, but its oral bioavailability is limited. This investigation aimed to evaluate anti-atherosclerotic effects of Bingpian, based on understanding its first-pass metabolism. Human subjects orally received an herbal medicine containing Bingpian and their plasma samples were analyzed to identify the major circulating compounds of Bingpian, with the metabolism that was also characterized in vitro and in mice. The identified compounds were evaluated for their ability to inhibit macrophage foam-cell formation induced by oxidized low-density lipoprotein. Furthermore, the anti-atherosclerotic effect of repeatedly dosed Bingpian was assessed in ApoE-/- mice fed a high-fat diet. In human subjects, the major circulating compounds of Bingpian were metabolites, rather than their precursor constituents borneol and isoborneol. These constituents were efficiently absorbed in the intestinal tract but underwent significant first-pass metabolism, involving UGT2B7-mediated glucuronidation into borneol-2-O-glucuronide and isoborneol-2-O-glucuronide, respectively, and CYP2A6/2B6/3A-mediated oxidation both into camphor. Despite their poor membrane permeability, hepatic efflux of borneol-2-O-glucuronide and isoborneol-2-O-glucuronide into the systemic circulation was enhanced by MRP3/4. The circulating metabolites, particularly their combinations, markedly inhibited macrophage foam-cell formation induced by oxidized low-density lipoprotein in vitro. Sub-chronic administration of Bingpian (30 mg·kg-1·d-1, i.g.) for 12 weeks significantly decreased atherosclerotic lesion size and enhanced plaque stability in ApoE-/- mice. Systemic exposure to Bingpian metabolites in mice closely resembles that in humans, suggesting that the pharmacodynamic effects of Bingpian in mice are likely applicable to humans. Overall, the cardiovascular benefits of Bingpian involve reducing atherosclerosis by inhibiting foam-cell formation through its metabolites. This investigation supports that oral Bingpian could be a druggable agent for reducing atherosclerosis.

4.
Acta Pharmacol Sin ; 45(5): 1077-1092, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38267547

RESUMO

Sepsis, a life-threatening health issue, lacks effective medicine targeting the septic response. In China, treatment combining the intravenous herbal medicine XueBiJing with conventional procedures reduces the 28-day mortality of critically ill patients by modulating septic response. In this study, we identified the combined active constituents that are responsible for the XueBiJing's anti-sepsis action. Sepsis was induced in rats by cecal ligation and puncture (CLP). The compounds were identified based on their systemic exposure levels and anti-sepsis activities in CLP rats that were given an intravenous bolus dose of XueBiJing. Furthermore, the identified compounds in combination were assessed, by comparing with XueBiJing, for levels of primary therapeutic outcome, pharmacokinetic equivalence, and pharmacokinetic compatibility. We showed that a total of 12 XueBiJing compounds, unchanged or metabolized, circulated with significant systemic exposure in CLP rats that received XueBiJing. Among these compounds, hydroxysafflor yellow A, paeoniflorin, oxypaeoniflorin, albiflorin, senkyunolide I, and tanshinol displayed significant anti-sepsis activities, which involved regulating immune responses, inhibiting excessive inflammation, modulating hemostasis, and improving organ function. A combination of the six compounds, with the same respective doses as in XueBiJing, displayed percentage survival and systemic exposure in CLP rats similar to those by XueBiJing. Both the combination and XueBiJing showed high degrees of pharmacokinetic compatibility regarding interactions among the six active compounds and influences of other circulating XueBiJing compounds. The identification of XueBiJing's pharmacologically significant constituents supports the medicine's anti-sepsis use and provides insights into a polypharmacology-based approach to develop medicines for effective sepsis management.


Assuntos
Medicamentos de Ervas Chinesas , Ratos Sprague-Dawley , Sepse , Animais , Sepse/tratamento farmacológico , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/farmacocinética , Masculino , Ratos , Administração Intravenosa
5.
BMC Health Serv Res ; 24(1): 783, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982469

RESUMO

BACKGROUND: Social needs inhibit receipt of timely medical care. Social needs screening is a vital part of comprehensive cancer care, and patient navigators are well-positioned to screen for and address social needs. This mixed methods project describes social needs screening implementation in a prospective pragmatic patient navigation intervention trial for minoritized women newly diagnosed with breast cancer. METHODS: Translating Research Into Practice (TRIP) was conducted at five cancer care sites in Boston, MA from 2018 to 2022. The patient navigation intervention protocol included completion of a social needs screening survey covering 9 domains (e.g., food, transportation) within 90 days of intake. We estimated the proportion of patients who received a social needs screening within 90 days of navigation intake. A multivariable log binomial regression model estimated the adjusted rate ratios (aRR) and 95% confidence intervals (CI) of patient socio-demographic characteristics and screening delivery. Key informant interviews with navigators (n = 8) and patients (n = 21) assessed screening acceptability and factors that facilitate and impede implementation. Using a convergent, parallel mixed methods approach, findings from each data source were integrated to interpret study results. RESULTS: Patients' (n = 588) mean age was 59 (SD = 13); 45% were non-Hispanic Black and 27% were Hispanic. Sixty-nine percent of patients in the navigators' caseloads received social needs screening. Patients of non-Hispanic Black race/ethnicity (aRR = 1.25; 95% CI = 1.06-1.48) and those with Medicare insurance (aRR = 1.13; 95% CI = 1.04-1.23) were more likely to be screened. Screening was universally acceptable to navigators and generally acceptable to patients. Systems-based supports for improving implementation were identified. CONCLUSIONS: Social needs screening was acceptable, yet with modest implementation. Continued systems-based efforts to integrate social needs screening in medical care are needed.


Assuntos
Neoplasias da Mama , Navegação de Pacientes , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Pessoa de Meia-Idade , Estudos Prospectivos , Idoso , Avaliação das Necessidades , Boston , Adulto
6.
J Basic Microbiol ; 64(4): e2300705, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38253966

RESUMO

Ergothioneine (EGT) is a rare thiohistidine derivative with exceptional antioxidant properties. The blood level of EGT is considered highly reliable predictors for cardiovascular diseases and mortality, yet animals lack the ability to synthesize this compound. Free plasmids have been previously used to overexpress genes involved in the EGT biosynthetic pathway of Mycolicibacterium neoaurum. Here, we tentatively introduced a putative transporter gene mfsT1 into high-copy plasmids and sharply increased the ratio of extracellular EGT concentration from 18.7% to 44.9%. Subsequently, an additional copy of egtABCDE, hisG, and mfsT1 was inserted into the genome with a site-specific genomic integration tool of M. neoaurum, leading a 2.7 times increase in EGT production. Co-enhancing the S-adenosyl-L-methionine regeneration pathway, or alternatively, the integration of three copies of egtABCDE, hisG and mfsT1 into the genome further increased the total EGT yield by 16.1% (64.6 mg/L) and 21.7% (67.7 mg/L), respectively. After 168-h cultivation, the highest titer reached 85.9 mg/L in the latter strain with three inserted copies. This study provided a solid foundation for genome engineering to increase the production of EGT in M. neoaurum.


Assuntos
Ergotioneína , Mycobacteriaceae , Animais , Ergotioneína/genética , Ergotioneína/metabolismo , Antioxidantes/metabolismo
7.
Zhongguo Zhong Yao Za Zhi ; 49(11): 2897-2905, 2024 Jun.
Artigo em Zh | MEDLINE | ID: mdl-39041149

RESUMO

Rehmannia glutinosa is one of the commonly used Chinese herbal medicines, which has activities of heat-clearing,blood-cooling, Yin-nourishing, and body fluid-promoting. Iridoid glycosides are the main bioactive in R. glutinosa. Iridoid oxidase is a key rate-limiting enzyme in the biosynthetic pathway of iridoid glycosides. In this study, an iridoid oxidase gene Rg IO was screened based on the transcriptome data, followed by bioinformatics analysis, expression characteristic detection, and subcellular localization analysis. The results show that the coding region of Rg IO is 1 536 bp, with 511 amino acids encoded, and the molecular weight is about 58 258. 01. The protein sequence of Rg IO contains the conserved domains and motifs of cytochrome P450 oxidases. Rg IO has the highest sequence identities with its ortholog proteins in Striga asiatica, Striga hermonthica, and Centranthera grandiflora and has good sequence identities(77. 28%) with Catharanthus roseus Cr IO. Rg IO shows specific expression in the leaf of R. glutinosa. In response to MeJA induction, the expression of MeJA in leaves and roots after treatment increases by 3. 15 and 1. 3 times at 3 h and 6 h,respectively. The result of subcellular localization shows that Rg IO is distributed in the endoplasmic reticulum. Agrobacterium-mediated transient expression of Rg IO gene in leaves of R. glutinosa makes the content of catalpol increase by 0. 82 times compared with the transient expression of the empty vector. This study provides a key target gene for the molecular regulation and biosynthesis of catalpol in R. glutinosa and lays a foundation for revealing the complete biosynthetic pathway of catalpol.


Assuntos
Clonagem Molecular , Proteínas de Plantas , Rehmannia , Rehmannia/genética , Rehmannia/enzimologia , Rehmannia/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Regulação da Expressão Gênica de Plantas , Filogenia , Sequência de Aminoácidos
8.
Appl Microbiol Biotechnol ; 107(16): 5257-5267, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37405431

RESUMO

The engineered probiotic Escherichia coli Nissle 1917 (EcN) is expected to be employed in the diagnosis and treatment of various diseases. However, the introduced plasmids typically require antibiotics to maintain genetic stability, and the cryptic plasmids in EcN are usually eliminated to avoid plasmid incompatibility which may change the inherent probiotic characteristics. Here, we provided a simple design to minimize the genetic change of probiotics by eliminating native plasmids and reintroducing the recombinants carrying functional genes. Specific insertion sites in the vectors showed significant differences in the expression of fluorescence proteins. Selected integration sites were applied in the de novo synthesis of salicylic acid, leading to a titer of 142.0 ± 6.0 mg/L in a shake flask with good production stability. Additionally, the design successfully realized the biosynthesis of ergothioneine (45 mg/L) by one-step construction. This work expands the application scope of native cryptic plasmids to the easy construction of functional pathways. KEY POINTS: • Cryptic plasmids of EcN were designed to express exogenous genes • Insertion sites with different expression intensities in cryptic plasmids were provided • Target products were stably produced by engineering cryptic plasmids.


Assuntos
Antibacterianos , Probióticos , Antibacterianos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Plasmídeos/genética
9.
J Basic Microbiol ; 63(2): 168-178, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36284486

RESUMO

l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l-homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l-homoserine production, including enhancement of precursors for l-homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l-homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid-losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l-homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5-L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.


Assuntos
Antitoxinas , Proteínas de Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Homosserina/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Antibacterianos/metabolismo , Plasmídeos/genética , Antitoxinas/genética , Antitoxinas/metabolismo , Engenharia Metabólica/métodos
10.
Microb Cell Fact ; 21(1): 59, 2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35397581

RESUMO

BACKGROUND: 7ß-hydroxylated steroids (7ß-OHSt) possess significant activities in anti-inflammatory and neuroprotection, and some of them have been widely used in clinics. However, the production of 7ß-OHSt is still a challenge due to the lack of cheap 7ß-hydroxy precursor and the difficulty in regio- and stereo-selectively hydroxylation at the inert C7 site of steroids in industry. The conversion of phytosterols by Mycolicibacterium species to the commercial precursor, androst-4-ene-3,17-dione (AD), is one of the basic ways to produce different steroids. This study presents a way to produce a basic 7ß-hydroxy precursor, 7ß-hydroxyandrost-4-ene-3,17-dione (7ß-OH-AD) in Mycolicibacterium, for 7ß-OHSt synthesis. RESULTS: A mutant of P450-BM3, mP450-BM3, was mutated and engineered into an AD producing strain for the efficient production of 7ß-OH-AD. The enzyme activity of mP450-BM3 was then increased by 1.38 times through protein engineering and the yield of 7ß-OH-AD was increased from 34.24 mg L- 1 to 66.25 mg L- 1. To further enhance the performance of 7ß-OH-AD producing strain, the regeneration of nicotinamide adenine dinucleotide phosphate (NADPH) for the activity of mP450-BM3-0 was optimized by introducing an NAD kinase (NADK) and a glucose-6-phosphate dehydrogenase (G6PDH). Finally, the engineered strain could produce 164.52 mg L- 1 7ß-OH-AD in the cofactor recycling and regeneration system. CONCLUSIONS: This was the first report on the one-pot biosynthesis of 7ß-OH-AD from the conversion of cheap phytosterols by an engineered microorganism, and the yield was significantly increased through the mutation of mP450-BM3 combined with overexpression of NADK and G6PDH. The present strategy may be developed as a basic industrial pathway for the commercial production of high value products from cheap raw materials.


Assuntos
Fitosteróis , Biotransformação , Mycobacteriaceae , Fitosteróis/metabolismo , Regeneração , Esteroides
11.
Biotechnol Lett ; 44(12): 1401-1414, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36269495

RESUMO

Human epidermal growth factor (hEGF) has multiple biological functions, such as promoting cell proliferation, differentiation, and migration. In addition, it is a very expensive polypeptide with attractive market prospects. However, the production of hEGF needs for high cost to manufacture polypeptide demands reinvestigations of process conditions so as to enhance economic benefits. Improving the expression of soluble hEGF is the fundamental method to reduce the cost. In this study, a non-extracellular engineered strain of expressed hEGF was constructed, using plasmid pET-22b(+) in Escherichia coli. Preliminary fermentation and high cell density cultivation were carried out in shake flasks and in a 5 L bioreactor, respectively. A high yield of 98 ± 10 mg/L of soluble hEGF and a dry cell weight (DCW) of 6.98 ± 0.3 g/L were achieved in shake flasks. Then, fermentation conditions were optimized for large-scale production, while taking into consideration the expensive equipment required for cooling and conforming to industrial standards. A yield of 285 ± 10 mg/L of soluble hEGF, a final cell density of 57.4 ± 2 g/L DCW (OD600 141.1 ± 4.9), and hEGF productivity of 14.3 mg/L/h were obtained using a bioreactor at 32 °C for 20 h. The production method developed in this study for the biosynthesis of soluble hEGF is efficient and inexpensive.


Assuntos
Fator de Crescimento Epidérmico , Escherichia coli , Humanos , Escherichia coli/metabolismo , Fator de Crescimento Epidérmico/genética , Fator de Crescimento Epidérmico/metabolismo , Plasmídeos , Reatores Biológicos , Fermentação
12.
Biotechnol Lett ; 44(4): 571-580, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35254611

RESUMO

Patchoulol is a natural sesquiterpene, which is widely used in perfumes and cosmetics. In the work, the mitochondria of S. cerevisiae were engineered for patchoulol production. The patchoulol titer of mitochondria-compartmentalized strain (1.79 mg/L) was 2.71-fold higher than that of control strain (0.66 mg/L) using genome-integrated patchoulol synthase, indicating that mitochondria compartmentation resulted in higher concentration of FPP (farnesyl pyrophosphate) precursor for patchoulol production. Moreover, when fused FPP synthase and patchoulol synthase was overexpressed in the strain with a mitochondria-localized DMAPP (dimethylallyl diphosphate) pathway, the production of patchoulol increased significantly to 19.24 mg/L, indicating more precursors were provided for patchoulol production. Nevertheless, the introduction of excess foreign proteins into mitochondria might cause a certain stress on mitochondria and showed a negative effect on the growth of yeast cells, which could hinder the expression of foreign pathways and reduce the patchoulol production. In conclusion, mitochondria-engineered yeast cells showed important potential for the enhanced biosynthesis of patchoulol, and further engineering could be considered based on the present work.


Assuntos
Proteínas de Saccharomyces cerevisiae , Sesquiterpenos , Engenharia Metabólica/métodos , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Sesquiterpenos/metabolismo
13.
Zhongguo Zhong Yao Za Zhi ; 47(10): 2623-2633, 2022 May.
Artigo em Zh | MEDLINE | ID: mdl-35718480

RESUMO

To investigate the responses of key enzymes involved in steroidal saponin biosynthesis of Dioscorea zingiberensis to low phosphorus stress, we designed three treatments of severe phosphorus stress, moderate phosphorus stress, and normal phosphorus level. The D. zingiberensis plants were collected at the early, middle, and late stages of treatment. The content of total steroidal saponins in different tissues of D. zingiberensis was determined by spectrophotometry for the identification of the critical stage in response to low phosphorus stress. BGI 500 sequencing platform was employed to obtain the transcript information of D. zingiberensis samples at the critical stage of low phosphorus stress, and then a transcriptome library was constructed. The correlation between the expression of genes involved in steroidal saponin biosynthesis and the content of total steroidal saponins was analyzed for the screening of the key enzyme genes in response to low phosphorus stress. Further, the expression patterns of these genes were analyzed by real-time fluorescence PCR(qRT-PCR). The content of total steroidal saponins in D. zingiberensis had obvious tissue specificity under low phosphorus stress, and the early stage of stress was particularly important for D. zingiberensis to respond to low phosphorus stress. A total of 101 593 unigenes were obtained by transcriptome sequencing, of which 77.35% were annotated in NT, NR, SwissProt, KOG, GO, and KEGG. A total of 256 transcripts of known key enzyme genes in the biosynthetic pathway of steroidal saponins were identified. The expression levels of 69 transcripts encoding 18 catalytic enzymes were significantly correlated with the content of total steroidal saponins. The qRT-PCR results showed that several key enzyme genes presented different expression patterns in four tissues under low phosphorus stress. The results indicated that the content of total steroidal saponins and the expression of key enzyme genes regulating steroidal saponin biosynthesis in D. zingensis changed under low phosphorus stress. This study provides the biological information for elucidating the molecular mechanism of steroidal saponin biosynthesis in D. zingensis exposed to low phosphorus stress.


Assuntos
Dioscorea , Saponinas , Dioscorea/genética , Fósforo , Saponinas/genética , Esteroides , Transcriptoma
14.
Zhongguo Zhong Yao Za Zhi ; 47(7): 1824-1830, 2022 Apr.
Artigo em Zh | MEDLINE | ID: mdl-35534252

RESUMO

Leaf blight outbroke in Rehmannia glutinosa plantation in Wenxian county, Henan province in 2019. R. glutinosa plants with diseased leaves were collected from the plantation, and three strains were isolated from the diseased leaf samples. Pathogenicity test, morphological observation, and phylogenetic analysis of ITS, EF1-α, and Tub suggested that they were respectively Fusarium proliferatum, F. oxysporum, and F.acuminatum. Among them, F. acuminatum, as a pathogen of R. glutinosa leaf disease, had never been reported. To clarify the biological characteristics of F. acuminatum, this study tested the influence of light, pH, temperature, medium, carbon source, and nitrogen source on the mycelial growth rate of the pathogen during a 5-day culture period, and explored the lethal temperature. The results showed that the mycelia grew well under the photoperiod of 12 h light/12 h darkness, at 5-40 ℃(optimal temperature: 25 ℃), at pH 4-11(optimal pH: 7.0), on a variety of media(optimal medium: oatmeal agar), and in the presence of diverse carbon and nitrogen sources(optimal carbon source: soluble starch; optimal nitrogen source: sodium nitrate). The lethal temperature was verified to be 51 ℃(10 min). The conclusion is expected to lay a scientific basis for diagnosis and control of R. glutinosa leaf diseases caused by F. acuminatum.


Assuntos
Rehmannia , Carbono , Nitrogênio , Filogenia
15.
Metab Eng ; 68: 232-245, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34710614

RESUMO

Harnessing mitochondria is considered as a promising method for biosynthesis of terpenes due to the adequate supply of acetyl-CoA and redox equivalents in mitochondria. However, mitochondrial engineering often causes serious metabolic burden indicated by poor cell growth. Here, we systematically analyzed the metabolic burden caused by the compartmentalization of the MVA pathway in yeast mitochondria for squalene synthesis. The phosphorylated intermediates of the MVA pathway, especially mevalonate-5-P and mevalonate-5-PP, conferred serious toxicity within mitochondria, which significantly compromised its possible advantages for squalene synthesis and was difficult to be significantly improved by routine pathway optimization. These phosphorylated intermediates were converted into ATP analogues, which strongly inhibited ATP-related cell function, such as mitochondrial oxidative respiration. Fortunately, the introduction of a partial MVA pathway from acetyl-CoA to mevalonate in mitochondria as well as the augmentation of the synthesis of mevalonate in cytosol could significantly promote the growth of yeasts. Accordingly, a combinatorial strategy of cytoplasmic and mitochondrial engineering was proposed to alleviate the metabolic burden caused by the compartmentalized MVA pathway in mitochondria and improve cell growth. The strategy also displayed the superimposed effect of cytoplasmic engineering and mitochondrial engineering on squalene production. Through a two-stage fermentation process, the squalene titer reached 21.1 g/L with a specific squalene titer of 437.1 mg/g dcw, which was the highest at present. This provides new insight into the production of squalene and other terpenes in yeasts based on the advantages of mitochondrial engineering.


Assuntos
Saccharomyces cerevisiae , Esqualeno , Acetilcoenzima A , Engenharia Metabólica , Mitocôndrias/genética , Saccharomyces cerevisiae/genética
16.
Artigo em Inglês | MEDLINE | ID: mdl-34228610

RESUMO

A novel Gram-stain-negative, short rod-shaped, facultatively anaerobic, non-motile, non-gliding, oxidase-positive and catalase-negative bacterium, designated ML27T, was isolated from oyster homogenate in Rushan, Weihai, PR China. Growth occurred at 20-33 °C (optimum, 30 °C), at pH 7.0-9.0 (optimum, pH 7.5-8.0) and in the presence of 1-6 % (w/v) NaCl (optimum, 3 %). Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain ML27T was 90.7 % similar to Suttonella ornithocola DSM 18249T, 89.2 % to Suttonella indologenes JCM 1478T and 88.2 % to Cardiobacterium hominis DSM 8339T; similarities to other species were less than 90 %. The average amino acid identity between strain ML27T, S. indologenes JCM 1478T, S. ornithocola DSM 18249T, C. hominis DSM 8339T and Dichelobacter nodosus ATCC 25549T were 46.23, 45.86, 45.54 and 45.84 %, respectively. Phylogenomic tree and phylogenetic analyses based on 16S rRNA gene sequences showed that the isolate formed a novel family-level clade in the order Cardiobacteriales. The sole respiratory quinone was ubiquinone-7 (Q-7). The dominant cellular fatty acids were summed feature 8 (C18 : 1 ω7c/C18 : 1 ω6c; 46.3 %), C16 : 0 (17.8 %) and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c; 13.5 %). The DNA G+C content of strain ML27T was 45.6 mol%. Polar lipids included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and one unidentified lipid. Comparative analyses of 16S rRNA gene sequences, genomic distinctiveness and characterization indicated that strain ML27T represents a novel species of a new genus within a novel family of the order Cardiobacteriales, for which the name Ostreibacterium oceani gen. nov., sp. nov. is proposed. The type strain of Ostreibacterium oceani is ML27T (=MCCC 1H00372T=KCTC 72155T). In addition, a novel family, Ostreibacteriaceae fam. nov., is proposed to accommodate the genus Ostreibacterium.


Assuntos
Gammaproteobacteria/classificação , Ostreidae/microbiologia , Filogenia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano/genética , Ácidos Graxos/química , Gammaproteobacteria/isolamento & purificação , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Ubiquinona/química
17.
Acta Pharmacol Sin ; 42(12): 2155-2172, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33931765

RESUMO

LianhuaQingwen capsule, prepared from an herbal combination, is officially recommended as treatment for COVID-19 in China. Of the serial pharmacokinetic investigations we designed to facilitate identifying LianhuaQingwen compounds that are likely to be therapeutically important, the current investigation focused on the component Glycyrrhiza uralensis roots (Gancao). Besides its function in COVID-19 treatment, Gancao is able to induce pseudoaldosteronism by inhibiting renal 11ß-HSD2. Systemic and colon-luminal exposure to Gancao compounds were characterized in volunteers receiving LianhuaQingwen and by in vitro metabolism studies. Access of Gancao compounds to 11ß-HSD2 was characterized using human/rat, in vitro transport, and plasma protein binding studies, while 11ß-HSD2 inhibition was assessed using human kidney microsomes. LianhuaQingwen contained a total of 41 Gancao constituents (0.01-8.56 µmol/day). Although glycyrrhizin (1), licorice saponin G2 (2), and liquiritin/liquiritin apioside (21/22) were the major Gancao constituents in LianhuaQingwen, their poor intestinal absorption and access to colonic microbiota resulted in significant levels of their respective deglycosylated metabolites glycyrrhetic acid (8), 24-hydroxyglycyrrhetic acid (M2D; a new Gancao metabolite), and liquiritigenin (27) in human plasma and feces after dosing. These circulating metabolites were glucuronized/sulfated in the liver and then excreted into bile. Hepatic oxidation of 8 also yielded M2D. Circulating 8 and M2D, having good membrane permeability, could access (via passive tubular reabsorption) and inhibit renal 11ß-HSD2. Collectively, 1 and 2 were metabolically activated to the pseudoaldosterogenic compounds 8 and M2D. This investigation, together with such investigations of other components, has implications for precisely defining therapeutic benefit of LianhuaQingwen and conditions for its safe use.


Assuntos
Antivirais/farmacocinética , Tratamento Farmacológico da COVID-19 , Medicamentos de Ervas Chinesas/farmacocinética , Compostos Fitoquímicos/farmacocinética , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 2/metabolismo , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/efeitos adversos , Disponibilidade Biológica , Biotransformação , Cápsulas , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/efeitos adversos , Feminino , Glycyrrhiza/efeitos adversos , Células HEK293 , Humanos , Síndrome de Liddle/induzido quimicamente , Síndrome de Liddle/enzimologia , Masculino , Segurança do Paciente , Compostos Fitoquímicos/administração & dosagem , Compostos Fitoquímicos/efeitos adversos , Ratos Sprague-Dawley , Medição de Risco
18.
Zhongguo Zhong Yao Za Zhi ; 46(11): 2788-2797, 2021 Jun.
Artigo em Zh | MEDLINE | ID: mdl-34296577

RESUMO

NRT1 family proteins play an important roles for absorbing and transporting of nitrate in different plants. In order to identify the NRT1 family genes of Rehmannia glutinosa, this study used 11 NRT1 homologous proteins of Arabidopsis as probe sequences and aligned with the transcriptome data of R. glutinosa by using NCBI BLASTN software. Resulting there were 18 NRT1 proteins were identified in R. glutinosa. On basis of this, a series of the molecular characteristics of R. glutinosa NRT1 proteins including the conserved domains, the transmembrane structure, the subcellular location and phylogenetic features were in detail analyzed. At same time, it were systematically analyzed that the temporal and spatial expression patterns and characteristics of R. glutinosa NRT1 family genes in response to different stress factors. The results indicated that 18 R. glutinosa NRT1 family genes with the length of coding region from 1 260 bp to 1 806 bp, encoded proteins ranging from 419 to 601 amino acids, and all of they owned the domains of typical peptide transporter with 7 to 12 transmembrane domains. These R. glutinosa NRT1 family proteins mostly were found to locate on cellular plasma membrane, and belonged to the hydrophobic proteins. Furthermore, the evolutionary analysis found that the 18 R. glutinosa NRT1 protein family could be divided into two subfamilies, of which 14 NRT1 family genes might occur the positive selection, and 4 genes occur the passivation selection during the evolution process of R. glutinosa. In addition the expression analysis showed that 18 R. glutinosa NRT1 family genes have the distinct expression patterns in different tissues of R. glutinosa, and their expression levels were also obvious difference in response to various stress. These findings infield that 18 R. glutinosa NRT1 family proteins might have obviously different functional roles in nitrate transport of R. glutinosa. In conclusion, this study lays a solid theoretical foundation for clarifying the absorption and transport molecular mechanism of N element during R. glutinosa growth and development, and at same time for deeply studying the molecular function of R. glutinosa NRT1 proteins in absorption and transport of nitrate.


Assuntos
Rehmannia , Proteínas de Transporte de Ânions , Proteínas de Membrana Transportadoras , Nitratos , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Rehmannia/genética , Transcriptoma
19.
Zhongguo Zhong Yao Za Zhi ; 46(17): 4367-4379, 2021 Sep.
Artigo em Zh | MEDLINE | ID: mdl-34581039

RESUMO

The present study analyzed the effects of planting density on the development, quality, and gene transcription characte-ristics of Rehmannia glutinosa using 85-5 and J9 as materials with three planting densities of 5 000, 25 000, and 50 000 plants/Mu(1 Mu≈667 m~2). The agronomic characteristics of leaves and tuberous roots, the content of catalpol and acteoside, and the changes of gene expression were determined. The results showed that the leaf size, the diameter of tuberous root, leaf biomass, tuberous root number, and tuberous root biomass per plant at low density were significantly higher than those of medium and high densities. The content of catalpol and acteoside in leaves was higher at high density. The content of catalpol in tuberous roots was higher at low density, and the change trend was similar to that in leaves, while the content of acteoside in tuberous roots was higher at high density. Transcriptome analysis found that about 1/2 of the expansin genes could change regularly in response to density treatment, which was rela-ted to the development of tuberous roots. The change trend of the gene expression of multiple catalytic enzymes involved in the biosynthesis of catalpol and acteoside was consistent with that of their content, which was presumedly involved in the accumulation and regulation of density-responsive medicinal components. Based on the analysis of the development, medicinal components, and gene expression characteristics of R. glutinosa at different densities, this study is expected to provide an important basis for regulating the quality and yield of medicinal materials of R. glutinosa by managing the planting density.


Assuntos
Rehmannia , Perfilação da Expressão Gênica , Folhas de Planta/genética , Raízes de Plantas/genética , Rehmannia/genética , Transcrição Gênica
20.
Metab Eng ; 57: 151-161, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711816

RESUMO

Engineering microbes to produce terpenes from renewable feedstock is a promising alternative to traditional production approaches. Generally, terpenes are not readily secreted by microbial cells, and their distribution within cells is usually obscure and often a restricting factor for the overproduction of terpenes due to the storage limitation. Here, we determined that squalene overproduced in the cytoplasm of Saccharomyces cerevisiae was distributed in a form similar to oil droplets. Interestingly, these suspected oil droplets were confirmed to be inflated peroxisomes that were swollen along with the production of squalene, indicating that peroxisomes in S. cerevisiae are dynamic depots for the storage of squalene. In view of this, harnessing peroxisomes as subcellular compartments for squalene synthesis was performed, achieving a 138-fold improvement in squalene titer (1312.82 mg/L) relative to the parent strain, suggesting that the peroxisome of S. cerevisiae is an efficient subcellular factory for the synthesis of terpenes. By dual modulation of cytoplasmic and peroxisomal engineering, the squalene titer was further improved to 1698.02 mg/L. After optimizing a two-stage fed-batch fermentation method, the squalene titer reached 11.00 g/L, the highest ever reported. This provides new insight into the synthesis and storage of squalene in peroxisomes and reveals the potential of harnessing peroxisomes to overproduce terpenes in S. cerevisiae through dual cytoplasmic-peroxisomal engineering.


Assuntos
Engenharia Metabólica , Peroxissomos , Saccharomyces cerevisiae , Esqualeno/metabolismo , Peroxissomos/genética , Peroxissomos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa