Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 63(21): e202401441, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38533760

RESUMO

Zn metal as a promising anode of aqueous batteries faces severe challenges from dendrite growth and side reactions. Here, tetraphenylporphyrin tetrasulfonic acid (TPPS) is explored as an electrolyte additive for advanced Zn anodes. It is interesting to note that TPPS spontaneously assembles into unique aggregates. As they adsorb on the Zn anode, the aggregates enhance the resistance to electrolyte percolation and dendrite growth compared to single molecules. Meanwhile, TPPS facilitates anion association in the solvation sheath of Zn2+, and boosts the transference number of Zn2+ up to 0.95. Therefore, anion-related side reactions and anion-induced electrode overpotentials are reduced accordingly. In this context, the electrolyte containing TPPS exhibits excellent electrochemical performance. Even under a high loading of MnO2 (25 mg cm-2), a limited Zn supply (N/P ratio=1.7), and a lean electrolyte (15 µL mAh-1), the full cells still represent a higher cumulative capacity compared to the reported data. The advantages of this electrolyte are also adapted to other cathode materials. The pouch cells of Zn||NaV3O8 ⋅ 1.5H2O realize a capacity of ~0.35 Ah at 0.4 C under harsh conditions.

2.
Chem Sci ; 15(9): 3071-3092, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38425533

RESUMO

Aqueous zinc-iodine batteries stand out as highly promising energy storage systems owing to the abundance of resources and non-combustible nature of water coupled with their high theoretical capacity. Nevertheless, the development of aqueous zinc-iodine batteries has been impeded by persistent challenges associated with iodine cathodes and Zn anodes. Key obstacles include the shuttle effect of polyiodine and the sluggish kinetics of cathodes, dendrite formation, the hydrogen evolution reaction (HER), and the corrosion and passivation of anodes. Numerous strategies aimed at addressing these issues have been developed, including compositing with carbon materials, using additives, and surface modification. This review provides a recent update on various strategies and perspectives for the development of aqueous zinc-iodine batteries, with a particular emphasis on the regulation of I2 cathodes and Zn anodes, electrolyte formulation, and separator modification. Expanding upon current achievements, future initiatives for the development of aqueous zinc-iodine batteries are proposed, with the aim of advancing their commercial viability.

3.
Chem Commun (Camb) ; 60(6): 750-753, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38116817

RESUMO

Zn anodes of aqueous batteries face severe challenges from side reactions and dendrite growth. Here, triethanolamine (TEOA) is developed as an electrolyte additive to address these challenges. It enhances the exposure of Zn(002) and diminishes the change in pH. Therefore, the electrolyte containing TEOA shows improved electrochemical performance.

4.
Adv Mater ; 33(44): e2104039, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34477273

RESUMO

Organic electrode materials have shown extraordinary promise for green and sustainable electrochemical energy storage devices, but usually suffer from low specific capacity and poor rate capability, which is largely caused by inactive components and diffusion-controlled Li+ intercalation. Herein, high-rate Li+ intercalation pseudocapacitance in organic molecular crystals is achieved through introducing weak secondary bonding channels, far exceeding their theoretical capacity based on redox chemistry at functional groups. The authors' combined experimentally electrochemical characterization with first-principles calculations show that the heterocyclic organic molecule 2,2'-bipyridine-4,4'-dicarboxylic acid (BPDCA) crystal permits a four-electron redox reaction at conventional CO and CN groups and a six-electron intercalation pseudocapacitance along conjugated alkene hydrogen bonding channels (H2 NC5 H⋯OC(OH)) and heterocyclic aromatic stacking channels (C5 H3 N⋯NH3 C5 ). The BPDCA electrode delivers an ultrahigh reversible capacity of 1206 mAh g-1 at 0.5 A g-1 and an exceptional rate capability. A 4.8 V high-energy/power-density BPDCA anode-based hybrid Li-ion capacitor is thus realized. This work opens a new avenue for developing organic intercalation pseudocapacitive materials via secondary bonding structure design.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa