Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(6): e2309852121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306476

RESUMO

Metal-organic frameworks (MOFs) are superior ion adsorbents for selectively capturing toxic ions from water. Nevertheless, they have rarely been reported to have lithium selectivity over divalent cations due to the well-known flexibility of MOF framework and the similar physiochemical properties of Li+ and Mg2+. Herein, we report an ion-sieving adsorption approach to design sunlight-regenerable lithium adsorbents by subnanoporous MOFs for efficient lithium extraction. By integrating the ion-sieving agent of MOFs with light-responsive adsorption sites of polyspiropyran (PSP), the ion-sieving adsorption behaviors of PSP-MOFs with 6.0, 8.5, and 10.0 Å windows are inversely proportional to their pore size. The synthesized PSP-UiO-66 with a narrowest window size of 6.0 Å shows high LiCl adsorption capacity up to 10.17 mmol g-1 and good Li+/Mg2+ selectivity of 5.8 to 29 in synthetic brines with Mg/Li ratio of 1 to 0.1. It could be quickly regenerated by sunlight irradiation in 6 min with excellent cycling performance of 99% after five cycles. This work sheds light on designing selective adsorbents using responsive subnanoporous materials for environmentally friendly and energy-efficient ion separation and purification.

2.
J Am Chem Soc ; 146(20): 14058-14066, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38733559

RESUMO

Metal-organic framework (MOF) membranes with high ion selectivity are highly desirable for direct lithium-ion (Li+) separation from industrial brines. However, very few MOF membranes can efficiently separate Li+ from brines of high Mg2+/Li+ concentration ratios and keep stable in ultrahigh Mg2+-concentrated brines. This work reports a type of MOF-channel membranes (MOFCMs) by growing UiO-66-(SH)2 into the nanochannels of polymer substrates to improve the efficiency of MOF membranes for challenging Li+ extraction. The resulting membranes demonstrate excellent monovalent metal ion selectivity over divalent metal ions, with Li+/Mg2+ selectivity up to 103 since Mg2+ should overcome a higher energy barrier than Li+ when transported through the MOF pores, as confirmed by molecular dynamics simulations. Under dual-ion diffusion, as the Mg2+/Li+ mole ratio of the feed solution increases from 0.2 to 30, the membrane Li+/Mg2+ selectivity decreases from 1516 to 19, corresponding to the purity of lithium products between 99.9 and 95.0%. Further research on multi-ion diffusion that involves Mg2+ and three monovalent metal ions (K+, Na+, and Li+, referred to as M+) in the feed solutions shows a significant improvement in Li+/Mg2+ separation efficiency. The Li+/Mg2+ selectivity can go up to 1114 when the Mg2+/M+ molar concentration ratio is 1:1, and it remains at 19 when the ratio is 30:1. The membrane selectivity is also stable for 30 days in a highly concentrated solution with a high Mg2+/Li+ concentration ratio. These results indicate the feasibility of the MOFCMs for direct lithium extraction from brines with Mg2+ concentrations up to 3.5 M. This study provides an alternative strategy for designing efficient MOF membranes in extracting valuable minerals in the future.

3.
Angew Chem Int Ed Engl ; 63(18): e202401747, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38373179

RESUMO

Two-dimensional (2D) materials with high chemical stability have attracted intensive interest in membrane design for the separation of organic solvents. As a novel 2D material, polymeric fullerenes (C60)∞ with distinctive properties are very promising for the development of innovative membranes. In this work, we report the construction of a 2D (C60)∞ nanosheet membrane for organic solvent separation. The pathways of the (C60)∞ nanosheet membrane are constructed by sub-1-nm lateral channels and nanoscale in-plane pores created by the depolymerization of the (C60)∞ nanosheets. Attributing to ordered and shortened transport pathways, the ultrathin porous (C60)∞ membrane is superior in organic solvent separation. The hexane, acetone, and methanol fluxes are up to 1146.3±53, 900.4±41, and 879.5±42 kg ⋅ m-2 ⋅ h-1, respectively, which are up to 130 times higher than those of the state-of-the-art membranes with similar dye rejection. Our findings demonstrate the prospect of 2D (C60)∞ as a promising nanofiltration membrane in the separation of organic solvents from macromolecular compounds such as dyes, drugs, hormones, etc.

4.
Environ Sci Technol ; 57(45): 17246-17255, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37918342

RESUMO

The development of energy-efficient and environmentally friendly lithium extraction techniques is essential to meet the growing global demand for lithium-ion batteries. In this work, a dual-channel ion conductor membrane was designed for a concentration-driven lithium-selective ion diffusion process. The membrane was based on a porous lithium-ion conductor, and its pores were modified with an anion-exchange polymer. Thus, the sintered lithium-ion conductors provided highly selective cation transport channels, and the functionalized nanopores with positive charges enabled the complementary permeation of anions to balance the transmembrane charges. As a result, the dual-channel membrane realized an ultrahigh Li+/Na+ selectivity of ∼1389 with a competitive Li+ flux of 21.6 mmol·m-2·h-1 in a diffusion process of the LiCl/NaCl binary solution, which was capable of further maintaining the high selectivity over 7 days of testing. Therefore, this work demonstrates the great potential of the dual-channel membrane design for high-performing lithium extraction from aqueous resources with low energy consumption and minimal environmental impact.


Assuntos
Lítio , Sódio , Difusão
5.
Chem Soc Rev ; 51(6): 2224-2254, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35225300

RESUMO

Artificial ion channels with ion permeability and selectivity comparable to their biological counterparts are highly desired for efficient separation, biosensing, and energy conversion technologies. In the past two decades, both nanoscale and sub-nanoscale ion channels have been successfully fabricated to mimic biological ion channels. Although nanoscale ion channels have achieved intelligent gating and rectification properties, they cannot realize high ion selectivity, especially single-ion selectivity. Artificial angstrom-sized ion channels with narrow pore sizes <1 nm and well-defined pore structures mimicking biological channels have accomplished high ion conductivity and single-ion selectivity. This review comprehensively summarizes the research progress in the rational design and synthesis of artificial subnanometer-sized ion channels with zero-dimensional to three-dimensional pore structures. Then we discuss cation/anion, mono-/di-valent cation, mono-/di-valent anion, and single-ion selectivities of the synthetic ion channels and highlight their potential applications in high-efficiency ion separation, energy conversion, and biological therapeutics. The gaps of single-ion selectivity between artificial and natural channels and the connections between ion selectivity and permeability of synthetic ion channels are covered. Finally, the challenges that need to be addressed in this research field and the perspective of angstrom-scale ion channels are discussed.


Assuntos
Canais Iônicos , Ânions , Cátions , Condutividade Elétrica , Permeabilidade
6.
Angew Chem Int Ed Engl ; 62(8): e202212139, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36577702

RESUMO

Chiral separation membranes have shown great potential for the efficient separation of racemic mixtures into enantiopure components for many applications, such as in the food and pharmaceutical industries; however, scalable fabrication of membranes with both high enantioselectivity and flux remains a challenge. Herein, enantiopure S-poly(2,4-dimethyl-2-oxazoline) (S-PdMeOx) macromonomers were synthesized and used to prepare a new type of enantioselective membrane consisting of a chiral S-PdMeOx network scaffolded by graphene oxide (GO) nanosheets. The S-PdMeOx-based membrane showed a near-quantitative enantiomeric excess (ee) (98.3±1.7 %) of S-(-)-limonene over R-(+)-limonene and a flux of 0.32 mmol m-2 h-1 . This work demonstrates the potential of homochiral poly(2,4-disubstituted-2-oxazoline)s in chiral discrimination and provides a new route to the development of highly efficient enantioselective membranes using synthetic homochiral polymer networks.

7.
J Am Chem Soc ; 144(23): 10220-10229, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35586909

RESUMO

Membranes of high ion permselectivity are significant for the separation of ion species at the subnanometer scale. Here, we report porous organic cage (i.e., CC3) membranes with hierarchical channels including discrete internal cavities and cage-aligned external cavities connected by subnanometer-sized windows. The windows of CC3 sieve monovalent ions from divalent ones and the dual nanometer-sized cavities provide pathways for fast ion transport with a flux of 1.0 mol m-2 h-1 and a mono-/divalent ion selectivity (e.g., K+/Mg2+) up to 103, several orders of magnitude higher than the permselectivities of reported membranes. Molecular dynamics simulations illustrate the ion transport trajectory from the external to internal cavity via the CC3 window, where ions migrate in diverse hydration states following the energy barrier sequence of K+ < Na+ < Li+ ≪ Mg2+. This work sheds light on ion transport properties in porous organic cage channels of discrete frameworks and offers guidelines for developing membranes with hierarchical channels for efficient ion separation.


Assuntos
Lítio , Sódio , Transporte de Íons , Íons , Porosidade , Sódio/metabolismo
8.
Anal Chem ; 94(28): 10091-10100, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35737958

RESUMO

Radioactive U(VI) in nuclear wastewater is a global environmental pollutant that poses a great threat to human health. Therefore, it is of great significance to develop a U(VI) sensor with desirable sensitivity and selectivity. Inspired by electron-donating group modification for enhancement of binding affinity toward U(VI), we report an amine group functionalization of UiO-66-NH2, using a low-cost, environmentally friendly, and low-temperature NH3 plasma technique as a fluorescence switching nanoprobe for highly sensitive and selective detection of U(VI). The resulting amine-functionalized UiO-66-NH2 (LTP@UiO-66-NH2) shows dramatically enhanced fluorescence emission and selective sensitivity for U(VI) on the basis of the quenching effect. The quenching efficiency increases from 58 to 80% with the same U(VI) concentration (17.63 µM) after NH3 plasma functionalization. As a result, the LTP@UiO-66-NH2 has the best Ksv (1.81 × 105 M-1, 298 K) and among the lowest LODs (0.08 µM, 19.04 ppb) compared with those reported in the literature. Intraday and interday precision and application in real environment experiments indicate stable and accurate U(VI) detection performance. Fluorescence lifetime and temperature-dependent detection experiments reveal that the quenching mechanism belongs to the static quenching interaction. The highly selective fluorescence detection is attributed to the selective binding of U(VI) by the rich functionalized amine groups of LTP@UiO-66-NH2. This work provides an efficient fluorescence probe for highly sensitive U(VI) detection in water, and a new strategy of tailored plasma functionalization for developing a practical MOF sensor platform for enhanced fluorescence emission, sensitivity, and selectivity for detecting trace amounts of radioactive species in the environment.


Assuntos
Compostos Organometálicos , Ácidos Ftálicos , Aminas , Humanos , Estruturas Metalorgânicas , Água
9.
Small ; 17(6): e2007211, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33470519

RESUMO

High-temperature electrolysis using solid oxide electrolysis cells (SOECs) provides a promising way for the storage of renewable energy into chemical fuels. During the past, nickel-based cathode-supported thin-film electrolyte configuration was widely adopted. However, such cells suffer from the serious challenge of anode delamination at high electrolysis currents due to enormous gaseous oxygen formation at the anode-electrolyte interface with insufficient adhesion caused by low sintering temperatures for ensuring high anode porosity and cathode pulverization because of potential nickel redox reaction. Here, the authors propose, fabricate, and test asymmetric thick anode-supported SOECs with firm anode-electrolyte interface and graded anode gas diffusion channel for realizing efficient and stable electrolysis at ultrahigh currents. Such a specially structured anode allows the co-sintering of anode support and electrolyte at high temperatures to form strong interface adhesion while suppressing anode sintering. The mixed oxygen-ion and electron conducting anode with graded channel structure provides a fast oxygen release pathway, large anode surface for oxygen evolution reaction, and excellent support for depositing nanocatalysts, to further improve oxygen evolution activity. As a result, the as-prepared cells demonstrate both high performance, comparable or even higher than state-of-the-art cathode-supported SOECs, and outstanding stability at a record current density of 2.5 A cm-2 .

10.
Nat Mater ; 19(7): 767-774, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32152561

RESUMO

Biological ion channels have remarkable ion selectivity, permeability and rectification properties, but it is challenging to develop artificial analogues. Here, we report a metal-organic framework-based subnanochannel (MOFSNC) with heterogeneous structure and surface chemistry to achieve these properties. The asymmetrically structured MOFSNC can rapidly conduct K+, Na+ and Li+ in the subnanometre-to-nanometre channel direction, with conductivities up to three orders of magnitude higher than those of Ca2+ and Mg2+, equivalent to a mono/divalent ion selectivity of 103. Moreover, by varying the pH from 3 to 8 the ion selectivity can be tuned further by a factor of 102 to 104. Theoretical simulations indicate that ion-carboxyl interactions substantially reduce the energy barrier for monovalent cations to pass through the MOFSNC, and thus lead to ultrahigh ion selectivity. These findings suggest ways to develop ion selective devices for efficient ion separation, energy reservation and power generation.


Assuntos
Estruturas Metalorgânicas , Metais/química , Nanoestruturas/química , Cátions Monovalentes , Condutividade Elétrica , Humanos
11.
J Am Chem Soc ; 142(21): 9827-9833, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32364714

RESUMO

Biological proton channels are sub-1-nm protein pores with ultrahigh proton (H+) selectivity over other ions. Inspired by biological proton channels, developing artificial proton channels with biological-level selectivity is of fundamental significance for separation science. Herein we report synthetic proton channels fabrication based on sulfonated metal-organic frameworks (MOFs), UiO-66-X, X = SAG, NH-SAG, (NH-SAG)2 (SAG: sulfonic acid groups), which have sub-1-nm windows and a high density of sulfonic acid groups mimicking natural proton channels. The ion conductance of UiO-66-X channels follows the sequence: H+ ≫ K+ > Na+> Li+, and the sulfonated UiO-66 derivative channels show proton selectivity much higher than that of the pristine UiO-66 channels. Particularly, the UiO-66-(NH-SAG)2 channels exhibit ultrahigh proton selectivities, H+/Li+ up to ∼100, H+/Na+ of ∼80, and H+/K+ of ∼70, which are ∼3 times of that of UiO-66-NH-SAG channels, and ∼15 times of that of UiO-66@SAG channels. The ultrahigh proton selectivity in the sulfonated sub-1-nm MOF channels is mainly attributed to the narrow window-cavity pore structure functionalized with nanoconfined high-density sulfonic acid groups that facilitate fast proton transport and simultaneously exclude other cations. Our work opens an avenue to develop functional MOF channels for selective ion conduction and efficient ion separation.

12.
Small ; 16(51): e2006800, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33251694

RESUMO

Exploring active, stable, and low-cost bifunctional electrocatalysts for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is crucial for water splitting technology associated with renewable energy storage in the form of hydrogen fuel. Here, a newly designed antiperovskite-based hybrid composed of a conductive InNNi3 core and amorphous InNi(oxy)hydroxide shell is first reported as promising OER/HER bifunctional electrocatalyst. Prepared by a facile electrochemical oxidation strategy, such unique hybrid (denoted as EO-InNNi3 ) exhibits excellent OER and HER activities in alkaline media, benefiting from the inherent high-efficiency HER catalytic nature of InNNi3 antiperovskite and the promoting role of OER-active InNi(oxy)hydroxide thin film, which is confirmed by theoretical simulations and in situ Raman studies. Moreover, an alkaline electrolyzer integrated EO-InNNi3 as both anode and cathode delivers a low voltage of 1.64 V at 10 mA cm-2 , while maintaining excellent durability. This work demonstrates the application of antiperovskite-based materials in the field of overall water splitting and inspires insights into the development of advanced catalysts for various energy applications.

13.
Small ; 16(20): e2001204, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32309914

RESUMO

The oxygen evolution reaction (OER) is pivotal in multiple gas-involved energy conversion technologies, such as water splitting, rechargeable metal-air batteries, and CO2 /N2 electrolysis. Emerging anion-redox chemistry provides exciting opportunities for boosting catalytic activity, and thus mastering lattice-oxygen activation of metal oxides and identifying the origins are crucial for the development of advanced catalysts. Here, a strategy to activate surface lattice-oxygen sites for OER catalysis via constructing a Ruddlesden-Popper/perovskite hybrid, which is prepared by a facile one-pot self-assembly method, is developed. As a proof-of-concept, the unique hybrid catalyst (RP/P-LSCF) consists of a dominated Ruddlesden-Popper phase LaSr3 Co1.5 Fe1.5 O10-δ (RP-LSCF) and second perovskite phase La0.25 Sr0.75 Co0.5 Fe0.5 O3-δ (P-LSCF), displaying exceptional OER activity. The RP/P-LSCF achieves 10 mA cm-2 at a low overpotential of only 324 mV in 0.1 m KOH, surpassing the benchmark RuO2 and various state-of-the-art metal oxides ever reported for OER, while showing significantly higher activity and stability than single RP-LSCF oxide. The high catalytic performance for RP/P-LSCF is attributed to the strong metal-oxygen covalency and high oxygen-ion diffusion rate resulting from the phase mixture, which likely triggers the surface lattice-oxygen activation to participate in OER. The success of Ruddlesden-Popper/perovskite hybrid construction creates a new direction to design advanced catalysts for various energy applications.

14.
Angew Chem Int Ed Engl ; 59(31): 13051-13056, 2020 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32343468

RESUMO

1D nanochannels modified with responsive molecules are fabricated to replicate gating functionalities of biological ion channels, but gating effects are usually weak because small molecular gates cannot efficiently block the large channels in the closed states. Now, 3D metal-organic framework (MOF) sub-nanochannels (SNCs) confined with azobenzene (AZO) molecules achieve efficient light-gating functionalities. The 3D MOFSNCs consisting of a MOF UiO66 with ca. 9-12 Šcavities connected by ca. 6 Štriangular windows work as angstrom-scale ion channels, while confined AZO within the MOF cavities function as light-driven molecular gates to efficiently regulate the ion flux. The AZO-MOFSNCs show good cyclic gating performance and high on-off ratios up to 17.8, an order of magnitude higher than ratios observed in conventional 1D AZO-modified nanochannels (1.3-1.5). This work provides a strategy to develop highly efficient switchable ion channels based on 3D porous MOFs and small responsive molecules.

15.
Small ; 15(39): e1903120, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31402592

RESUMO

Oxygen evolution reaction (OER) is crucial in many renewable electrochemical technologies including regenerative fuel cells, rechargeable metal-air batteries, and water splitting. It is found that abundant active sites with favorable electronic structure and high electrical conductivity play a dominant role in achieving high electrocatalytic efficiency of perovskites, thus efficient strategies need to be designed to generate multiple beneficial factors for OER. Here, highlighted is an unusual super-exchange effect in ferromagnetic perovskite oxide to optimize active sites and enhance electrical conductivity. A systematic exploration about the composition-dependent OER activity in SrCo1 x Rux O3- δ (denoted as SCRx) (x = 0.0-1.0) perovskite is displayed with special attention on the role of super-exchange interaction between high spin (HS) Co3+ and Ru5+ ions. Induced by the unique Co3+ -O-Ru5+ super-exchange interactions, the SCR0.1 is endowed with abundant OER active species including Co3+ /Co4+ , Ru5+ , and O2 2- /O- , high electrical conductivity, and metal-oxygen covalency. Benefiting from these advantageous factors for OER electrocatalysis, the optimized SCR0.1 catalyst exhibits a remarkable activity with a low overpotential of 360 mV at 10 mA cm-2 , which exceeds the benchmark RuO2 and most well-known perovskite oxides reported so far, while maintaining excellent durability. This work provides a new pathway in developing perovskite catalysts for efficient catalysis.

16.
Nat Mater ; 22(6): 677-678, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37169974
17.
Chemistry ; 25(53): 12281-12287, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31292996

RESUMO

The conversion of renewable plant polyphenol to advanced materials with tailorable properties and various functions is desirable and challenging. In this work, monovalent cation-phenolic crystals contained K+ or Na+ ions were synthesized by using plant polyphenol as an organic source in alkaline solution. The crystal structure was resolved, showing a laminar crystal structure with M+ as connecting nodes. The morphologies (e.g., rod-like and spindle-shaped) and chemical compositions of crystals could be tuned by changing the cations. Interestingly, these polymer crystals exhibited a pH-driven reversible crystal transformation. They transformed into their protonated crystalline form under acidic conditions (e.g., pH 2) and went back to the cation-bound crystalline form in alkaline solutions. Furthermore, the crystals proved excellent antioxidants and heavy metal ion adsorbents.

18.
Angew Chem Int Ed Engl ; 58(49): 17512-17527, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-30811730

RESUMO

Two-dimensional nanosheets have shown great potential for separation applications because of their exceptional molecular transport properties. Nanosheet materials such as graphene oxides, metal-organic frameworks, and covalent organic frameworks display unique, precise, and fast molecular transport through nanopores and/or nanochannels. However, the dimensional instability of nanosheets in harsh environments diminishes the membrane performance and hinders their long-term operation in various applications such as gas separation, water desalination, and ion separation. Recent progress in nanosheet membranes has included modification by crosslinking and functionalization that has improved the stability of the membranes, their separation functionality, and the scalability of membrane formation while the membranes' excellent molecular transport properties are retained. These improvements have enhanced the potential of nanosheet membranes in practical applications such as separation processes.

19.
Angew Chem Int Ed Engl ; 58(47): 16928-16935, 2019 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-31535784

RESUMO

Homochiral metal-organic framework (MOF) membranes have been recently reported for chiral separations. However, only a few high-quality homochiral polycrystalline MOF membranes have been fabricated due to the difficulty in crystallization of a chiral MOF layer without defects on porous substrates. Alternatively, mixed matrix membranes (MMMs), which combine potential advantages of MOFs and polymers, have been widely demonstrated for gas separation and water purification. Here we report novel homochiral MOF-polymer MMMs for efficient chiral separation. Homochirality was successfully incorporated into achiral MIL-53-NH2 nanocrystals by post-synthetic modification with amino acids, such as l-histidine (l-His) and l-glutamic acid (l-Glu). The MIL-53-NH-l-His and MIL-53-NH-l-Glu nanocrystals were then embedded into polyethersulfone (PES) matrix to form homochiral MMMs, which exhibited excellent enantioselectivity for racemic 1-phenylethanol with the highest enantiomeric excess value up to 100 %. This work, as an example, demonstrates the feasibility of fabricating diverse large-scale homochiral MOF-based MMMs for chiral separation.

20.
Angew Chem Int Ed Engl ; 57(51): 16708-16712, 2018 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-30358031

RESUMO

In nature, biological machines and motors can selectively transport cargoes across the lipid membranes to efficiently perform various physiological functions via ion channels or ion pumps. It is interesting and challengeable to develop artificial motors and machines of nanodimensions to controllably regulate mass transport in compartmentalized systems. In this work, we show a system of artificial molecular motors that uses light energy to perform transmembrane molecule transport through synthetical nanochannels. After functionalizing the polymer nanochannels with azobenzene derivatives, these nanomachines exhibit autonomous selective transport behavior over a long distance upon simultaneous irradiation with UV (365 nm) and visible (430 nm) light. With new strategies or suitable materials for directed molecular movement, such device can be regarded as a precursor of artificial light-driven molecular pumps.


Assuntos
Bacteriorodopsinas/metabolismo , Luz , Bacteriorodopsinas/química , Transporte Biológico , Canais Iônicos/química , Canais Iônicos/metabolismo , Modelos Moleculares , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa