Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
2.
Proc Biol Sci ; 291(2015): 20232292, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38264783

RESUMO

Predator-prey interactions have been suggested as drivers of diversity in different lineages, and the presence of anti-predator defences in some clades is linked to higher rates of diversification. Warning signals are some of the most widespread defences in the animal world, and there is evidence of higher diversification rates in aposematic lineages. The mechanisms behind such species richness, however, are still unclear. Here, we test whether lineages that use aposematism as anti-predator defence exhibit higher levels of genetic differentiation between populations, leading to increased opportunities for divergence. We collated from the literature more than 3000 pairwise genetic differentiation values across more than 700 populations from over 60 amphibian species. We find evidence that over short geographical distances, populations of species of aposematic lineages exhibit greater genetic divergence relative to species that are not aposematic. Our results support a scenario where the use of warning signals could restrict gene flow, and suggest that anti-predator defences could impact divergence between populations and potentially have effects at a macro-evolutionary scale.


Assuntos
Anuros , Mimetismo Biológico , Animais , Deriva Genética , Evolução Biológica , Fluxo Gênico
3.
Glob Chang Biol ; 30(2): e17179, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38403891

RESUMO

As climate change advances, environmental gradients may decouple, generating novel multivariate environments that stress wild populations. A commonly invoked mechanism of evolutionary rescue is adaptive gene flow tracking climate shifts, but gene flow from populations inhabiting similar conditions on one environmental axis could cause maladaptive introgression when populations are adapted to different environmental variables that do not shift together. Genomic architecture can play an important role in determining the effectiveness and relative magnitudes of adaptive gene flow and in situ adaptation. This may have direct consequences for how species respond to climate change but is often overlooked. Here, we simulated microevolutionary responses to environmental change under scenarios defined by variation in the polygenicity, linkage, and genetic redundancy of two independent traits, one of which is adapted to a gradient that shifts under climate change. We used these simulations to examine how genomic architecture influences evolutionary outcomes under climate change. We found that climate-tracking (up-gradient) gene flow, though present in all scenarios, was strongly constrained under scenarios of lower linkage and higher polygenicity and redundancy, suggesting in situ adaptation as the predominant mechanism of evolutionary rescue under these conditions. We also found that high polygenicity caused increased maladaptation and demographic decline, a concerning result given that many climate-adapted traits may be polygenic. Finally, in scenarios with high redundancy, we observed increased adaptive capacity. This finding adds to the growing recognition of the importance of redundancy in mediating in situ adaptive capacity and suggests opportunities for better understanding the climatic vulnerability of real populations.


Assuntos
Adaptação Fisiológica , Mudança Climática , Adaptação Fisiológica/genética , Fenótipo , Evolução Biológica , Genômica
4.
Syst Biol ; 72(4): 874-884, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37186031

RESUMO

Interspecific hybridization may act as a major force contributing to the evolution of biodiversity. Although generally thought to reduce or constrain divergence between 2 species, hybridization can, paradoxically, promote divergence by increasing genetic variation or providing novel combinations of alleles that selection can act upon to move lineages toward new adaptive peaks. Hybridization may, then, play a key role in adaptive radiation by allowing lineages to diversify into new ecological space. Here, we test for signatures of historical hybridization in the Anolis lizards of Puerto Rico and evaluate 2 hypotheses for the role of hybridization in facilitating adaptive radiation-the hybrid swarm origins hypothesis and the syngameon hypothesis. Using whole genome sequences from all 10 species of Puerto Rican anoles, we calculated D and f-statistics (from ABBA-BABA tests) to test for introgression across the radiation and employed multispecies network coalescent methods to reconstruct phylogenetic networks that allow for hybridization. We then analyzed morphological data for these species to test for patterns consistent with transgressive evolution, a phenomenon in which the trait of a hybrid lineage is found outside of the range of its 2 parents. Our analyses uncovered strong evidence for introgression at multiple stages of the radiation, including support for an ancient hybrid origin of a clade comprising half of the extant Puerto Rican anole species. Moreover, we detected significant signals of transgressive evolution for 2 ecologically important traits, head length and toepad width, the latter of which has been described as a key innovation in Anolis. [Adaptive radiation; introgression; multispecies network coalescent; phenotypic evolution; phylogenetic network; reticulation; syngameon; transgressive segregation.].


Assuntos
Lagartos , Animais , Filogenia , Lagartos/genética , Hibridização Genética , Biodiversidade , Porto Rico , Evolução Biológica
5.
J Hered ; 114(6): 690-697, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37688363

RESUMO

Snakes in the family Colubridae include more than 2,000 currently recognized species, and comprise roughly 75% of the global snake species diversity on Earth. For such a spectacular radiation, colubrid snakes remain poorly understood ecologically and genetically. Two subfamilies, Colubrinae (788 species) and Dipsadinae (833 species), comprise the bulk of colubrid species richness. Dipsadines are a speciose and diverse group of snakes that largely inhabit Central and South America, with a handful of small-body-size genera that have invaded North America. Among them, the ring-necked snake, Diadophis punctatus, has an incredibly broad distribution with 14 subspecies. Given its continental distribution and high degree of variation in coloration, diet, feeding ecology, and behavior, the ring-necked snake is an excellent species for the study of genetic diversity and trait evolution. Within California, six subspecies form a continuously distributed "ring species" around the Central Valley, while a seventh, the regal ring-necked snake, Diadophis punctatus regalis is a disjunct outlier and Species of Special Concern in the state. Here, we report a new reference genome assembly for the San Diego ring-necked snake, D. p. similis, as part of the California Conservation Genomics Project. This assembly comprises a total of 444 scaffolds spanning 1,783 Mb and has a contig N50 of 8.0 Mb, scaffold N50 of 83 Mb, and BUSCO completeness score of 94.5%. This reference genome will be a valuable resource for studies of the taxonomy, conservation, and evolution of the ring-necked snake across its broad, continental distribution.


Assuntos
Colubridae , Animais , Colubridae/genética , Genômica , Genoma , América do Norte , Filogenia
6.
J Hered ; 114(4): 436-443, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37119047

RESUMO

The black rail, Laterallus jamaicensis, is one of the most secretive and poorly understood birds in the Americas. Two of its five subspecies breed in North America: the Eastern black rail (L. j. jamaicensis), found primarily in the southern and mid-Atlantic states, and the California black rail (L. j. coturniculus), inhabiting California and Arizona, are recognized across the highly disjunct distribution. Population declines, due primarily to wetland loss and degradation, have resulted in conservation status listings for both subspecies. To help advance understanding of the phylogeography, biology, and ecology of this elusive species, we report the first reference genome assembly for the black rail, produced as part of the California Conservation Genomics Project (CCGP). We produced a de novo genome assembly using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology with an estimated sequencing error rate of 0.182%. The assembly consists of 964 scaffolds spanning 1.39 Gb, with a contig N50 of 7.4 Mb, scaffold N50 of 21.4 Mb, largest contig of 44.8 Mb, and largest scaffold of 101.2 Mb. The assembly has a high BUSCO completeness score of 96.8% and represents the first genome assembly available for the genus Laterallus. This genome assembly can help resolve questions about the complex evolutionary history of rails, assess black rail vagility and population connectivity, estimate effective population sizes, and evaluate the potential of rails for adaptive evolution in the face of growing threats from climate change, habitat loss and fragmentation, and disease.


Assuntos
Aves , Genoma , Animais , Aves/genética , Ecossistema , Genômica , Ecologia , Cromossomos
7.
J Hered ; 114(4): 428-435, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37105531

RESUMO

The Virginia rail, Rallus limicola, is a member of the family Rallidae, which also includes many other species of secretive and poorly studied wetland birds. It is recognized as a single species throughout its broad distribution in North America where it is exploited as a game bird, often with generous harvest limits, despite a lack of systematic population surveys and evidence of declines in many areas due to wetland loss and degradation. To help advance understanding of the phylogeography, biology, and ecology of this elusive species, we report the first reference genome assembly for the Virginia rail, produced as part of the California Conservation Genomics Project (CCGP). We produced a de novo genome assembly using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology with an estimated sequencing error rate of 0.191%. The assembly consists of 1,102 scaffolds spanning 1.39 Gb, with a contig N50 of 11.0 Mb, scaffold N50 of 25.3 Mb, largest contig of 45 Mb, and largest scaffold of 128.4 Mb. It has a high BUSCO completeness score of 96.9% and represents the first genome assembly available for the genus Rallus. This genome assembly will help resolve questions about the complex evolutionary history of rails and evaluate the potential of rails for adaptive evolution in the face of growing threats from climate change and habitat loss and fragmentation. It will also provide a valuable resource for rail conservation efforts by quantifying Virginia rail vagility, population connectivity, and effective population sizes.


Assuntos
Genoma , Genômica , Animais , Virginia , Cromossomos , Aves/genética
8.
J Hered ; 114(6): 681-689, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37493092

RESUMO

Rattlesnakes play important roles in their ecosystems by regulating prey populations, are involved in complex coevolutionary dynamics with their prey, and exhibit a variety of unusual adaptations, including maternal care, heat-sensing pit organs, hinged fangs, and medically-significant venoms. The western rattlesnake (Crotalus oreganus) is one of the widest ranging rattlesnake species, with a distribution from British Columbia, where it is listed as threatened, to Baja California and east across the Great Basin to western Wyoming, Colorado and New Mexico. Here, we report a new reference genome assembly for one of six currently recognized subspecies, C. oreganus helleri, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomic sequencing strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 698 scaffolds spanning 1,564,812,557 base pairs, has a contig N50 of 64.7 Mb, a scaffold N50 of 110.8 Mb, and BUSCO complete score of 90.5%. This reference genome will be valuable for studies on the genomic basis of venom evolution and variation within Crotalus, in resolving the taxonomy of C. oreganus and its relatives, and for the conservation and management of rattlesnakes in general.


Assuntos
Crotalus , Ecossistema , Serpentes Peçonhentas , Animais , México , Crotalus/genética
9.
J Hered ; 114(5): 521-528, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37335574

RESUMO

Spiny lizards (genus Sceloporus) have long served as important systems for studies of behavior, thermal physiology, dietary ecology, vector biology, speciation, and biogeography. The western fence lizard, Sceloporus occidentalis, is found across most of the major biogeographical regions in the western United States and northern Baja California, Mexico, inhabiting a wide range of habitats, from grassland to chaparral to open woodlands. As small ectotherms, Sceloporus lizards are particularly vulnerable to climate change, and S. occidentalis has also become an important system for studying the impacts of land use change and urbanization on small vertebrates. Here, we report a new reference genome assembly for S. occidentalis, as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genomics strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises a total of 608 scaffolds spanning 2,856 Mb, has a contig N50 of 18.9 Mb, a scaffold N50 of 98.4 Mb, and BUSCO completeness score of 98.1% based on the tetrapod gene set. This reference genome will be valuable for understanding ecological and evolutionary dynamics in S. occidentalis, the species status of the California endemic island fence lizard (S. becki), and the spectacular radiation of Sceloporus lizards.


Assuntos
Genoma , Lagartos , Animais , México , Ecossistema , Genômica , Lagartos/genética
10.
J Hered ; 114(4): 410-417, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37195437

RESUMO

Genome assemblies are increasingly being used to identify adaptive genetic variation that can help prioritize the population management of protected species. This approach may be particularly relevant to species like Blainville's horned lizard, Phrynosoma blainvillii, due to its specialized diet on noxious harvester ants, numerous adaptative traits for avoiding predation (e.g. cranial horns, dorsoventrally compressed body, cryptic coloration, and blood squirting from the orbital sinuses), and status as Species of Special Concern in California. Rangewide decline since the early 20th century, the basis of its conservation status, has been driven mainly by habitat conversion, over-collecting, and invasion of a non-native ant that displaces its native ant prey base. Here, we report on a scaffold-level genome assembly for P. blainvillii as part of the California Conservation Genomics Project (CCGP), produced using Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology. The de novo assembly has 78 scaffolds, a total length of ~2.21 Gb, a scaffold N50 length of ~352 Mb, and BUSCO score of 97.4%. This is the second species of Phrynosoma for which a reference genome has been assembled and represents a considerable improvement in terms of contiguity and completeness. Combined with the landscape genomics data being compiled by the CCGP, this assembly will help strategize efforts to maintain and/or restore local genetic diversity, where interventions like genetic rescue, translocation, and strategic land preservation may be the only means by which P. blainvillii and other low-vagility species can survive in the fragmented habitats of California.


Assuntos
Lagartos , Animais , Lagartos/genética , Genoma , Genômica , Cromossomos , América do Norte
11.
J Therm Biol ; 113: 103532, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37055135

RESUMO

Temperature rules the lives of ectotherms. To perform basic biological functions, ectotherms must make behavioral adjustments to keep their body temperatures near a preferred temperature (Tpref). Many color polymorphic lizards are active thermoregulators and exhibit morph differences in traits related to thermoregulation, such as color, body size, and microhabitat use. The Aegean wall lizard, Podarcis erhardii, is a heliothermic lizard with orange, white, and yellow color morphs that differ in size, behavior, and microhabitat use. Here, we tested whether P. erhardii color morphs from the same population from Naxos island, Greece, differ in Tpref. We hypothesized that orange morphs would prefer lower temperatures than white and yellow morphs because orange morphs are often found on cooler substrates and in microhabitats with more vegetation cover. We obtained Tpref for 95 individuals using laboratory thermal gradient experiments of wild-caught lizards and found that orange morphs do, indeed, prefer cooler temperatures. Average orange morph Tpref was 2.85 °C lower than average white and yellow morph Tpref. Our results add support to the idea that P. erhardii color morphs have multivariate alternative phenotypes and present the possibility that thermally heterogeneous environments play a role in the maintenance of color polymorphism in this species.


Assuntos
Lagartos , Temperatura Alta , Animais , Cor , Lagartos/fisiologia , Masculino , Feminino , Grécia , Regulação da Temperatura Corporal
12.
Mol Biol Evol ; 38(10): 4634-4646, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34117771

RESUMO

Understanding the drivers of spatial patterns of genomic diversity has emerged as a major goal of evolutionary genetics. The flexibility of forward-time simulation makes it especially valuable for these efforts, allowing for the simulation of arbitrarily complex scenarios in a way that mimics how real populations evolve. Here, we present Geonomics, a Python package for performing complex, spatially explicit, landscape genomic simulations with full spatial pedigrees that dramatically reduces user workload yet remains customizable and extensible because it is embedded within a popular, general-purpose language. We show that Geonomics results are consistent with expectations for a variety of validation tests based on classic models in population genetics and then demonstrate its utility and flexibility with a trio of more complex simulation scenarios that feature polygenic selection, selection on multiple traits, simulation on complex landscapes, and nonstationary environmental change. We then discuss runtime, which is primarily sensitive to landscape raster size, memory usage, which is primarily sensitive to maximum population size and recombination rate, and other caveats related to the model's methods for approximating recombination and movement. Taken together, our tests and demonstrations show that Geonomics provides an efficient and robust platform for population genomic simulations that capture complex spatial and evolutionary dynamics.


Assuntos
Genética Populacional , Genômica , Evolução Biológica , Simulação por Computador , Metagenômica
13.
Proc Biol Sci ; 289(1987): 20221871, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36382524

RESUMO

The evolution of costly signalling traits has largely focused on male ornaments. However, our understanding of ornament evolution is necessarily incomplete without investigating the causes and consequences of variation in female ornamentation. Here, we study the Anolis lizard dewlap, a trait extensively studied as a male secondary sexual characteristic but present in females of several species. We characterized female dewlaps for 339 species to test hypotheses about their evolution. Our results did not support the hypothesis that female dewlaps are selected against throughout the anole phylogeny. Rather, we found that female dewlaps were evolutionary labile. We also did not find support for the adaptive hypothesis that interspecific competition drove the evolution of female dewlaps. However, we did find support for the pleiotropy hypothesis as species with larger females and reduced sexual size dimorphism were more likely to possess female dewlaps. Lastly, we found that female dewlap presence influenced diversification rates in anoles, but only secondarily to a hidden state. Our results demonstrate that female ornamentation is widespread in anoles and the traditional hypothesis of divergent selection between the sexes does not fully explain their evolution. Instead, female ornamentation is likely to be subject to complex adaptive and non-adaptive evolutionary forces.


Assuntos
Lagartos , Animais , Masculino , Feminino , Filogenia , Fenótipo , Caracteres Sexuais , Evolução Biológica
14.
J Hered ; 113(6): 624-631, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35665811

RESUMO

The northwestern pond turtle, Actinemys marmorata, and its recently recognized sister species, the southwestern pond turtle, A. pallida, are the sole aquatic testudines occurring over most of western North America and the only living representatives of the genus Actinemys. Although it historically ranged from Washington state through central California, USA, populations of the northwestern pond turtle have been in decline for decades and the species is afforded state-level protection across its range; it is currently being considered for protection under the US Endangered Species Act. Here, we report a new, chromosome-level assembly of A. marmorata as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genome strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises 198 scaffolds spanning 2,319,339,408 base pairs, has a contig N50 of 75 Mb, a scaffold N50 of 146Mb, and BUSCO complete score of 96.7%, making it the most complete testudine assembly of the 24 species from 13 families that are currently available. In combination with the A. pallida reference genome that is currently under construction through the CCGP, the A. marmorata genome will be a powerful tool for documenting landscape genomic diversity, the basis of adaptations to salt tolerance and thermal capacity, and hybridization dynamics between these recently diverged species.


Assuntos
Tartarugas , Animais , Tartarugas/genética , Genoma , Genômica , Cromossomos , Espécies em Perigo de Extinção
15.
J Hered ; 113(6): 641-648, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-36056886

RESUMO

The rubber boa, Charina bottae is a semi-fossorial, cold-temperature adapted snake that ranges across the wetter and cooler ecoregions of the California Floristic Province. The rubber boa is 1 of 2 species in the family Boidae native to California and currently has 2 recognized subspecies, the Northern rubber boa C. bottae bottae and the Southern rubber boa C. bottae umbratica. Recent genomic work on C. bottae indicates that these 2 subspecies are collectively composed of 4 divergent lineages that separated during the late Miocene. Analysis of habitat suitability indicates that C. bottae umbratica montane sky-island populations from southern California will lose the majority of their habit over the next 70 yr, and is listed as Threatened under the California Endangered Species Act. Here, we report a new, chromosome-level assembly of C. bottae bottae as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genome strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technology to produce a de novo assembled genome. The assembly comprises 289 scaffolds covering 1,804,944,895 bp, has a contig N50 of 37.3 Mb, a scaffold N50 of 97 Mb, and BUSCO completeness score of 96.3%, and represents the first reference genome for the Boidae snake family. This genome will enable studies of genetic differentiation and connectivity among C. bottae bottae and C. bottae umbratica populations across California and help manage locally endemic lineages as they confront challenges from human-induced climate warming, droughts, and wildfires across California.


Assuntos
Boidae , Animais , Humanos , Boidae/genética , Borracha , Genoma , Espécies em Perigo de Extinção , Cromossomos
16.
J Hered ; 113(6): 577-588, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35395669

RESUMO

The California Conservation Genomics Project (CCGP) is a unique, critically important step forward in the use of comprehensive landscape genetic data to modernize natural resource management at a regional scale. We describe the CCGP, including all aspects of project administration, data collection, current progress, and future challenges. The CCGP will generate, analyze, and curate a single high-quality reference genome and 100-150 resequenced genomes for each of 153 species projects (representing 235 individual species) that span the ecological and phylogenetic breadth of California's marine, freshwater, and terrestrial ecosystems. The resulting portfolio of roughly 20 000 resequenced genomes will be analyzed with identical informatic and landscape genomic pipelines, providing a comprehensive overview of hotspots of within-species genomic diversity, potential and realized corridors connecting these hotspots, regions of reduced diversity requiring genetic rescue, and the distribution of variation critical for rapid climate adaptation. After 2 years of concerted effort, full funding ($12M USD) has been secured, species identified, and funds distributed to 68 laboratories and 114 investigators drawn from all 10 University of California campuses. The remaining phases of the CCGP include completion of data collection and analyses, and delivery of the resulting genomic data and inferences to state and federal regulatory agencies to help stabilize species declines. The aspirational goals of the CCGP are to identify geographic regions that are critical to long-term preservation of California biodiversity, prioritize those regions based on defensible genomic criteria, and provide foundational knowledge that informs management strategies at both the individual species and ecosystem levels.


Assuntos
Biodiversidade , Ecossistema , Filogenia , Genômica , Água Doce , California , Conservação dos Recursos Naturais
17.
J Hered ; 113(6): 632-640, 2022 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-35939354

RESUMO

The glossy snake (Arizona elegans) is a polytypic species broadly distributed across southwestern North America. The species occupies habitats ranging from California's coastal chaparral to the shortgrass prairies of Texas and southeastern Nebraska, to the extensive arid scrublands of central México. Three subspecies are currently recognized in California, one of which is afforded state-level protection based on the extensive loss and modification of its preferred alluvial coastal scrub and inland desert habitat. We report the first genome assembly of A. elegans occidentalis as part of the California Conservation Genomics Project (CCGP). Consistent with the reference genome strategy of the CCGP, we used Pacific Biosciences HiFi long reads and Hi-C chromatin-proximity sequencing technologies to produce a de novo assembled genome. The assembly comprises a total of 140 scaffolds spanning 1,842,602,218 base pairs, has a contig NG50 of 61 Mb, a scaffold NG50 of 136 Mb, and a BUSCO complete score of 95.9%, and is one of the most complete snake genome assemblies. The A. e. occidentalis genome will be a key tool for understanding the genomic diversity and the basis of adaptations within this species and close relatives within the hyperdiverse snake family Colubridae.


Assuntos
Colubridae , Animais , Colubridae/genética , Arizona , Genômica , Genoma , Cromossomos
18.
Mol Ecol ; 30(16): 4062-4076, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34160853

RESUMO

Understanding how geographic and environmental heterogeneity drive local patterns of genetic variation is a major goal of ecological genomics and a key question in evolutionary biology. The tropical Andes and inter-Andean valleys are shaped by markedly heterogeneous landscapes, where species experience strong selective processes. We examined genome-wide SNP data together with behavioural and ecological traits (mating calls and body size) known to contribute to genetic isolation in anurans in the banana tree-dwelling frog, Boana platanera, distributed across an environmental gradient in Central Colombia (northern South America). Here, we analysed the relationships between environmentally (temperature and precipitation) associated genetic and phenotypic differentiation and the potential drivers of isolation by environment along an elevation gradient. We identified candidate SNPs associated with temperature and body size, which follow a clinal pattern of genome-wide differentiation tightly coupled with phenotypic variation: as elevation increases, B. platanera exhibits larger body size and longer call duration with more pulses but lower pulse rate and frequency. Thus, the environmental landscape has rendered a scenario where isolation by environment and candidate loci show concordance with phenotypic divergence in this tropical frog along an elevation gradient in the Colombian Andes. Our study sets the basis for evaluating the role of temperature in the genetic structure and local adaptation in tropical treefrogs and its putative effect on life cycle (embryos, tadpoles, adults) along elevation gradients.


Assuntos
Altitude , Anuros , Animais , Anuros/genética , Colômbia , Genômica , Isolamento Reprodutivo
19.
Mol Ecol ; 29(1): 40-55, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31710739

RESUMO

Epigenetic changes can provide a pathway for organisms to respond to local environmental conditions by influencing gene expression. However, we still know little about the spatial distribution of epigenetic variation in natural systems, how it relates to the distribution of genetic variation and the environmental structure of the landscape, and the processes that generate and maintain it. Studies examining spatial patterns of genetic and epigenetic variation can provide valuable insights into how ecological and population processes contribute to epigenetic divergence across heterogeneous landscapes. Here, we perform a comparative analysis of spatial genetic and epigenetic variation based on 8,459 single nucleotide polymorphisms (SNPs) and 8,580 single methylation variants (SMVs) from eight populations of the Puerto Rican crested anole, Anolis cristatellus, an abundant lizard in the adaptive radiations of anoles on the Greater Antilles that occupies a diverse range of habitats. Using generalized dissimilarity modelling and multiple matrix regression, we found that genome-wide epigenetic differentiation is strongly correlated with environmental divergence, even after controlling for the underlying genetic structure. We also detected significant associations between key environmental variables and 96 SMVs, including 42 located in promoter regions or gene bodies. Our results suggest an environmental basis for population-level epigenetic differentiation in this system and contribute to better understanding how environmental gradients structure epigenetic variation in nature.


Assuntos
Ecologia , Epigênese Genética , Lagartos/genética , Animais , Metilação de DNA , Ecossistema , Meio Ambiente , Epigenômica , Genética Populacional , Masculino , Porto Rico
20.
Mol Ecol ; 28(20): 4573-4591, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31541595

RESUMO

Evolutionary changes in reproductive mode may affect co-evolving traits, such as dispersal, although this subject remains largely underexplored. The shift from aquatic oviparous or larviparous reproduction to terrestrial viviparous reproduction in some amphibians entails skipping the aquatic larval stage and, thus, greater independence from water. Accordingly, amphibians exhibiting terrestrial viviparous reproduction may potentially disperse across a wider variety of suboptimal habitats and increase population connectivity in fragmented landscapes compared to aquatic-breeding species. We investigated this hypothesis in the fire salamander (Salamandra salamandra), which exhibits both aquatic- (larviparity) and terrestrial-breeding (viviparity) strategies. We genotyped 426 larviparous and 360 viviparous adult salamanders for 13 microsatellite loci and sequenced a mitochondrial marker for 133 larviparous and 119 viviparous individuals to compare population connectivity and landscape resistance to gene flow within a landscape genetics framework. Contrary to our predictions, viviparous populations exhibited greater differentiation and reduced genetic connectivity compared to larviparous populations. Landscape genetic analyses indicate viviparity may be partially responsible for this pattern, as water courses comprised a significant barrier only in viviparous salamanders, probably due to their fully terrestrial life cycle. Agricultural areas and, to a lesser extent, topography also decreased genetic connectivity in both larviparous and viviparous populations. This study is one of very few to explicitly demonstrate the evolution of a derived reproductive mode affects patterns of genetic connectivity. Our findings open avenues for future research to better understand the eco-evolutionary implications underlying the emergence of terrestrial reproduction in amphibians.


Assuntos
Variação Genética/genética , Oviparidade/genética , Salamandra/embriologia , Salamandra/genética , Viviparidade não Mamífera/genética , Animais , Evolução Biológica , DNA Mitocondrial/genética , Evolução Molecular , Feminino , Fluxo Gênico/genética , Genética Populacional , Repetições de Microssatélites/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa